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cases for special types of structures or analyses, most designs and verifications are currently performed on the
basis of the Partial Safety Factor Format (PSFF). This format is applied to cover different materials and structural
responses, allowing for a uniform methodology to account for reliability. Such consideration greatly simplifies
the design process, but raises concerns on its consistency when different structural responses are observed. In the
PSFF as considered in fib Model Code and Eurocodes, no explicit distinction is made on the value of the partial
safety factors (for actions or materials) depending on whether a structural system has a brittle or a ductile
response. This can be potentially inconsistent, as brittle systems have limited or no redistribution capacity of
internal forces (which can give rise to premature failures if action effects are poorly estimated), while ductile
systems have large potentials to redistribute internal forces and are thus little sensitive to this issue.

In this paper, to investigate on the suitability of PSFF for brittle structures, the most suitable manner to
determine internal forces for brittle elements failing in bending and the corresponding model uncertainties of
action effects are investigated in detail. The concepts are derived from a theoretical perspective and applied to
the case of Textile Reinforced Concrete (TRC). This material is a promising development to reduce the footprint
of concrete construction and to build lightweight structures, but exhibits a very brittle response in bending
(contrary to ordinary reinforced concrete with usual reinforcement ratios). In this paper, by means of an
experimental and theoretical investigation, it is shown that following a suitable approach to estimate internal
forces for brittle systems as TRC leads to a low level of model uncertainty of action effects. This leads to the
conclusion that, compared to standard design of ductile systems, no additional correction is required for safety
issues. Following this outcome, the partial factors for TRC structures are calibrated. In addition, due to the
significance of geometrical uncertainties, a method for designing TRC on the basis of a design value of the
effective depth (a reduced value accounting for construction tolerances instead of its nominal dimension) is
eventually discussed, showing that it allows for a more uniform level of safety.

decrease the overall thickness of TRC elements to 10-30 mm. In addi-
tion, since no passivation of the reinforcement is required, a low-clinker
content cement can also be used allowing to reduce the environmental
footprint of the material related to its CO emissions.

Despite the potential of TRC, its practical use remains still limited.
This is to a large extent explained by the lack of a consistent design
framework. Conventional methods widely accepted for reinforced con-
crete are potentially not directly applicable to TRC due to its brittle
nature. This issue is particularly instrumental in the case of statically
indeterminate structures, where redistributions of internal forces are

1. Introduction

In the last decades, Textile Reinforced Concrete (TRC) has emerged
as an interesting alternative to reinforced concrete, allowing to reduce
material consumption and the carbon footprint of cementitious-based
materials [1-3]. This new paradigm relies on the use of a non-metallic
fabric as reinforcement (typically made of carbon or glass), which is
insensitive to corrosion. As a consequence, cover requirements of the
reinforcement can be reduced to minimum static values, allowing to
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Nomenclature

Latin upper case letters

Atex total area of textile reinforcement in a beam cross section

AR coefficient in the multiplicative form approximation of the
resistance function

Ecaic calculated action effect at a given cross section of a
structure

E.m mean value of the elastic modulus of concrete (motar)

Eoxp experimental action effect at a given cross section of a
structure

E4 design value of action effect

Etexm mean value of the elastic modulus of textile reinforcement

Elrc and Ely¢ fully cracked and uncracked flexural rigidity of a cross

section

F load applied to a tested beam

Frep representative value of action variables

L span of a beam

Lo; and L,» overhang of a beam in three point bending test

M bending moment of a cross section

M; bending moment of a cross section of beam BI

My bending moment of a cross section of beam BII

M., cracking moment of a cross section

Mexp ultimate bending resistance of a tested beam

Mhogging 'maximum hogging moment of a beam according to a linear
response

Miqeeing maximum sagging moment of a beam according to a linear
response

Mg o  resistance of a beam cross section to the hogging moment

MR sqg resistance of a beam cross section to the sagging moment

Prob () probability function

Q load applied to an assembled cross-beam system
Qa and Qp load transferred to a component beam of an assembled
cross-beam system

Qexp experimental resistance of an assembled cross-beam
system
Qrarc resistance calculated with Linear Analysis assuming Fully-

Cracked stiffness (LAFC)

Qravc resistance calculated with Linear Analysis assuming
UnCracked stiffness (LAUC)

Qniza resistance calculated with NonLinear Analysis (NLA)

Reaic calculated local resistance of a structure

Rexp experimental local resistance of a structure

Ry design value of resistance

Utex nominal perimeter of the roving of textile reinforcement

V4 Coefficient of Variant (CoV) of the flexural depth random
variable

Viiex CoV of the textile reinforcement tensile strength random
variable

Vr CoV of the resistance random variable

Vsq CoV of the action effect model uncertainty

Vor CoV of the model uncertainty of local resistance

Xk the characteristic value for a material strength variable

Xnum the design vector for a component beam in the numerical

cross-beam system study

Latin lower case letters

Arom nominal value of geometrical variables

Apex net cross section of the roving of textile reinforcement

b width of a beam cross section

d flexural depth of a roving in a cross section

dave average flexural depth of all the rovings in a cross section

Arnax maximum value of the flexural depth of all the rovings in a
cross section
dpmin minimum value of the flexural depth of all the rovings in a

cross section

design design value for the flexural depth

dnom nominal value for the flexural depth

Crex grid spacing of the textile reinforcement

fe the compressive strength of concrete (motar)

feck characteristic value for concrete (motar) compressive
strength

fem mean value of the compressive strength of concrete
(motar)

fem mean value of the tensile strength of the concrete (motar)

frex the textile reinforcement tensile strength

Seex,ck characteristic value of the textile reinforcement tensile
strength

Srex,d design value of the textile reinforcement tensile strength

Sex,m mean value of the textile reinforcement tensile strength

g0 performance function

h height of a beam cross section

n, number of textile rovings in a cross section

Gcalc the calculated global resistance of a statically
indeterminate structure in terms of load factor

dcrshog external load level when the hogging region of a beam
cracks

Qerssag external load level when the sagging region of a beam
cracks

qE external action

Qexp experimental global resistance of a statically indeterminate
structure in terms of load factor

R hog external load level when the hogging region of a beam
reaches the ultimate resistance

4R sag external load level when the sagging region of a beam
reaches the ultimate resistance

dr1 external load level when beam BI reaches its load carrying
capacity

dr external load level when beam BII reaches its load carrying
capacity

XN position of the neutral axis of a cross section

Greek upper case letters

Ay reduction factor for the flexural depth
0 cumulative distribution function of standardized Normal
distribution

Greek lower case letters

aq FORM sensitivity factor of the flexural depth random
variable

ag FORM sensitivity factor for action effects

Olftex FORM sensitivity factor of the textile reinforcement
strength random variable

ay FORM sensitivity factor of the model uncertainty of local
resistance random variable

agr FORM sensitivity factor for the resistance

Pachievea  achieved reliability index

Pachieved-I achieved reliability index for safety format proposal I
Pachieved>II achieved reliability index for safety format proposal II

Prgt the target reliability index

Brgt 50 the target reliability index for a reference period of 50
years

Ye partial factor for concrete compressive strength

YF partial factors applied to action variables
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Y™ partial factors applied to material strength variables Ok random variable for action effect model uncertainty
Ysd partial factors for action effect model uncertainty Op 1AFC action effect model uncertainty variable for LAFC
Yiext partial factor for textile reinforcement strength in safety Ograrcnum action effect model uncertainty variable for LAFC
format Proposal I evaluated with numerical method
Yeexr partial factor for textile reinforcement strength in safety Orravc  action effect model uncertainty variable for LAUC
format Proposal II Orravcum action effect model uncertainty variable for LAUC
) mid-span deflection of a structure evaluated with numerical method
Seal calculated mid-span deflection of a structure 05 NLA action effect model uncertainty variable for NLA
Bexp experimental mid-span deflection of a structure Oglobal random variable for the global resistance model
& strain of concrete uncertainty
& strain of a single textile reinforcement roving OR Jocal random variable for the local resistance model uncertainty
n mean value of the conversion factors for material strength p flexural reinforcement ratio of a cross section
variables Pave average flexural reinforcement ratio of a cross section
nE efficiency factor for the textile modulus of elasticity oc stress of concrete
nf efficiency factor for the textile tensile strength o; stress of a single textile reinforcement roving
Nis the in-situ strength efficient factor of concrete X curvature of a cross section
/ | Uncertainties in actions | <« F1
Uncertainty in

representative values

- ‘ Uncertainties in modelling actions ‘4- F2

Design value of

action effect Ed :E{yEi Frc’p,i ’anam} ) Vr

Limit state verification : R, >E,
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Uncertainties in geometrical properties| < F3
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Uncertaln-tles in modelling <AEl
/ action effects
Model uncertainty in Uncertainties in material properties <AE?
action effects «— influencing action effects

Uncertainties in geometrical properties| « A g3
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Desigp value of R=R{N, X,/ 710 Yy
resistance

\

Model uncertainty in Uncertainties in modelling <RI
structural resistance | local resistance
Uncertainty in Uncertainties in material properties
. . -« : . . <« R2
material properties influencing local resistance
Uncertainty in Uncer.tainties i.n geometric{al properties| R3
geometrical properties influencing local resistance

Fig. 1. Relation between individual partial factors (adapted from EN1990:2002 [9], refer to Nomenclature section for details).

usually required to develop the full structural strength of the system.
Other aspects that are critical for the application of TRC in practice are
the potential sensitivity of thin elements to construction tolerances and
its reduced resistance in case of fire [4-6].

Currently, several analytical and numerical models are available to
describe the response of TRC members with respect to its sectional
behaviour. An extensive review of the state-of-the-art can be consulted
elsewhere (see for instance [7,8]). These approaches refer normally to
mean material properties and allow determining the average resistance
of TRC structural elements (or with a bias factor which should be close to
1.0). However, their application in practice requires accounting for the
inevitable uncertainties inherent to structural design. As a consequence,
a suitable safety format needs to be implemented, ensuring that the
probability of failure does not exceed an acceptable threshold. In the

case of the resistance formulae, such format shall account for the vari-
ability of the material properties as well as uncertainties related to the
calculation model and to construction tolerances.

For the reliability verification of structures, the so-called Partial
Safety Factor Format (PSFF) is adopted in many design codes (Eurocodes
[9,10] and fib Model Code [11] for example). In the PSFF, design values
of the basic variables are defined through partial safety factors and limit
state verifications are made with the design values of basic variables [9].
Partial factors for different materials and actions need to be calibrated so
that the reliability levels for representative structures in design are as
close as possible to the target reliability level. With respect to the
adoption of a suitable safety format for TRC design, several efforts have
been performed in the past [12-17] to address the principles of struc-
tural reliability and design procedures.
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Fig. 2. Analysis of a statically indeterminate reinforced concrete structure designed according to the internal forces calculated assuming linear uncracked behaviour:
(a) geometry and actions; (b) moment — curvature diagrams; and (c) moment — load diagrams.

The relationship between individual partial factors in PSFF of
Eurocodes is shown in Fig. 1 (adapted from Figure C3 in EN1990:2002
[9] accounting for the new definitions in the draft of the second gen-
eration of prEN1990:2020 [18]). It should be noted that in addition to
the basic uncertainties listed in Fig. 1, the partial safety factors should
also account for approximations and uncertainties in the safety format
calibration. Also, it has to be noted that this figure describes the classical

verification method for structures, where the analysis (calculation of
internal forces) is conducted separately from the calculation of the
associated resistances. Within this frame, the verification is conducted at
a given cross section by comparison of sectional internal forces and
related resistances. Such procedure will be referred in the following as a
local verification. As an alternative, the distribution of internal forces
can be calculated considering the response and strength of the materials
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(following a nonlinear analysis). This allows to determine directly the
load-carrying capacity of the system and will be referred to in the
following as a global verification method. In this case, the quantification
of the model uncertainties [19] can be quite different and other safety
formats [9,11] can be more appropriate.

In Eurocodes [9], the partial factors of actions yr and the partial
factors of material strength variables yy, are typically calibrated sepa-
rately by using constant standardised First Order Reliability Method
(FORM) sensitivity factors [9,20,21]. Taking advantage of this frame, in
order to define a safety format for TRC structures, only the partial factors
related to the resistance (materials) need to be recalibrated, while the
partial factors for action variables from Eurocodes [9] can theoretically
be maintained.

It is interesting to note in Fig. 1 that the model uncertainty of action
effects is accounted for in the partial factor for action variables, yr. Such
assumption, provided that a constant value of yr is adopted, ignores
differences related to material response (brittle/ductile response) and
analysis method (linear-elastic response/consideration of re-
distributions). This simplification can lead to unsatisfactory levels of
reliability for statically indeterminate brittle structures (as those built
with TRC).

In this paper, the action effect model uncertainty of TRC structures
will be investigated on the basis of a statistical evaluation of the results
of an experimental programme designed for this purpose. This investi-
gation will focus not only on statically determinate elements, but also on
the response of statically indeterminate structures failing in a brittle
manner. The safety format and partial factor related to the resistance
(ym) for TRC structures will then be calibrated based on a proper
probabilistic modelling of the basic variables. A suitable model to ac-
count for action effects on TRC structures and the corresponding model
uncertainty will be presented. On its basis, tailored values of the partial
safety factors for TRC will be derived as well as a suitable design
approach for calculation of internal forces.

2. Action effect model uncertainty in statically indeterminate
structures

In this section, the different influences of brittle and ductile re-
sponses on statically indeterminate structures are examined with respect
to their mechanical consequences and the associated reliability
considerations.

2.1. Influence of sectional behaviour on the structural response

To illustrate the different model uncertainty of action effects of
structures with different sectional response (brittle/ductile), the load-
bearing behaviour of statically indeterminate structures with different
materials is first investigated. As a representative example, two beams
with identical geometry and loading conditions (see Fig. 2a) but whose
material response is different are examined:

- Beam BI refers to the classical response of concrete reinforced with
ordinary steel rebars. Its moment-curvature diagram can be
approximated by a quadrilinear law showing a plastic plateau with
large deformation capacity related to extensive yielding of the lon-
gitudinal reinforcement and significant ultimate strain of the rein-
forcement steel (see Fig. 2b). This response can be considered as
ductile and thus insensitive to imposed deformations (allowing to
calculate the structural capacity according to limit analysis [22]).

Beam BII refers to a structure reinforced with a brittle reinforcement,
as for TRC, whose failure occurs prior to any plastic plateau or to an
over-reinforced structure with conventional steel reinforcement
where the compression zone crushes before the reinforcement yields.
The capacity to redistribute internal forces is limited to the change of
stiffness related to the cracked response and the structure can
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potentially be sensitive to imposed deformations (limit analysis not
applicable to calculate its structural capacity).

In a classical design of a reinforced concrete structure, the internal
forces are calculated assuming linear uncracked behaviour (not
considering cracking nor yielding). This allows neglecting the influence
of the reinforcement on the stiffness, so that no iteration is required in
designing a new structure. In this case, the sections of the beam
described above would be designed so to resist for the external action
(gg) both the maximum sagging moment according to a linear response
(MR sqg = 9/16 - qEL2/8) and the maximum hogging moment (MR pog = -
qgL%/8), requiring thus different amount of reinforcement at these sec-
tions, see Fig. 2b. In reality, when the load is applied, different phases of
response can be observed as shown in Fig. 2c for the two characteristic
sections (hogging and sagging region). Before cracking occurs, the dis-
tribution of bending moments follows that of the elastic uncracked
behaviour, with proportional increments to the load at both control
sections (maximum sagging moment equal to 9/16 - qL2/8 and a
maximum hogging moment equal to - gL.2/8). Cracking occurs first in the
hogging region (qcr,nog in Fig. 2¢), leading to a local loss of stiffness. As a
consequence, bending moments increase more than proportionally in
the sagging region and less than proportionally in the hogging region.

For a higher level of load, cracking at the sagging region also occurs
(gcr,sag) and the internal forces redistribute thereafter according to the
relative stiffness of the hogging and sagging regions. Since the rein-
forcement in the hogging region is higher due to the design procedure
(Fig. 2b), its stiffness is also higher and moments increase more than
proportionally in the hogging region (Fig. 2c¢). Depending on the
strength, the hogging or sagging region can first attain their strength. In
Fig. 2c¢, this case corresponds to the hogging region. Consequently, for
beam BII, a brittle failure occurs over the intermediate support, while
the sagging region would still have a capacity to increase the acting
moment, giving rise to a load carrying capacity lower than the action
assumed for design (qrr < gg). On the contrary, for beam BI, the
response of the governing section is ductile, and this allows for further
redistributions of internal forces, until both regions attain their resis-
tance and the full structural capacity is reached [23] (qr; = qg), see
Fig. 2c.

It is interesting to note thus that when brittle responses can be ex-
pected, evaluations of the internal forces deviating from the actual one
can lead to unsafe designs. The consequences of this fact in terms of
reliability are however not explicitly accounted for in the current
Eurocodes safety format, as the safety element for the model uncertainty
of action effects are only accounted for in the partial factors on actions
(yp), which is independent of the response of the structure and type of
action effect analysis model. On the other side, in structures with ductile
behaviour, the load carrying capacity corresponds exactly to the load
assumed for design, despite the fact that the actual behaviour deviates
significantly from the simplified behaviour assumed for the analysis
(typically linear elastic behaviour). It can be concluded that for struc-
tures with ductile response, the model uncertainty of action effects is
relatively small, whereas for brittle response, the model uncertainty of
action effects shall be consistently accounted for in accordance with the
type of analysis performed. This will be discussed in the following
section.

2.2. Model uncertainty of action effects in structural concrete

The need for considering the uncertainties in calculating the internal
forces in a structure, in addition to the uncertainties related to the ac-
tions, has been acknowledged already in the first attempts to quantify
the partial safety factors. According to the first discussions within CEB in
view of the preparation of the first Model Code [24], the partial safety
factor for actions was assumed to account for the uncertainties related to
calculation of the internal forces in case of refined analyses. However,
for the case of typical structural analysis or in presence of particular
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uncertainties, an additional partial factor ygg= 1.12 (1.4/1.25)
increasing the value of the actions was defined [25]. This additional
factor was intended to account for the uncertainties in modelling the
structure, for potential errors and for neglected effects [24].

A more detailed description of the uncertainties considered with this
additional partial safety factor, including an estimate of the coefficients
of variation of the ratio between actual and calculated internal forces
Eexp/Ecalc > has been proposed in the CEB Manuals “Structural Safety”
[26-28]. The considered uncertainties (coefficients of variation in
brackets) were:

(i) effect of differences between the actual structure and the ideal-
ized system assumed in the analysis (see uncertainty AE1 in
Figs. 1, 8% for concrete structures and 5% for steel structures);

(ii) approximations in the analysis (5%);

(iii) influence of imperfections during execution on the internal forces
(see uncertainty AE3 in Fig. 1; 5% for concrete structures and 2%
for steel structures);

(iv) the effect of neglected actions at ultimate limit state (as for
instance imposed deformations, including thermal effects and
shrinkage);

(v) the inaccuracy in determining the influence of load combinations
with the chosen safety format of partial safety factors (for the
uncertainties (iv) and (v), a coefficient of variation of 8% for
concrete structures and of 5% for steel structures, respectively).

In addition, also the uncertainty related to the assumed probability
functions of the actions has been considered (with a value of the coef-
ficient of variation between 0 and 5% depending on the coefficient of
variation of the action). It has to be noted, that in the safety format of
Fig. 1, this effect should be accounted for in the partial safety factor of
the actions (see also change in the latest draft of prEN 1990:2020 [18])
so that it is not considered in the following.

The coefficient of variation of the ratio between actual and calcu-
lated action effect (Exp/Ecqc) can be obtained from the square root of the
sum of the squares. For concrete structures, the total coefficient of
variation becomes Vgg = 0.125 (0.082 + 0.02% + 0.05% + 0.082) whereas
for steel structures, Vsg = 0.076 (0.05% + 0.02% + 0.02% + 0.05%). In [28],
the partial safety factor ysy has been calculated based on reliability
analysis assuming a probability of failure and a coefficient of variation
for the actions. The obtained values were approximately 1.125 for
concrete and 1.075 for steel structures, respectively. Similar values
could be obtained following the approach of [9] by assuming lognormal
distributions, a target reliability index P50 = 3.8 and a sensitivity
factor for non-dominating actions (o« = 0.4) leading to ysq = exp
(0.4-0.70-3.8:0.125) = 1.14.

According to the knowledge of the authors, this is the most detailed
description of the uncertainties covered by the partial factor ygq still
available in the literature and the result has been acknowledged in
different codes (current Eurocode “Basis of structural design [9] for
instance, defines values of ysqs between 1.05 and 1.15, see Table A1.2(B),
note 4). Nevertheless, it has to be noted that the considerations
described above reflect the state of knowledge and the engineering
practice at that time (1960s and 1970s). They were highly influenced by
the concern to calculate the “actual” internal forces as accurate as
possible with the tools of that time (typically hand calculations or
rudimentary computer programs), but surprisingly, the difference be-
tween statically determinate or indeterminate structures hasn’t been
considered explicitly. In addition, as shown above, for statically inde-
terminate structures, a significant uncertainty can arise from the dif-
ference between the mechanical behaviour assumed for the structural
analysis (typically linear elastic uncracked) and the behaviour assumed
for calculating the sectional resistance (typically cracked concrete with
nonlinear behaviour for concrete and steel).
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2.3. Definition of the random variable for model uncertainties

From the case study described above, it has been observed that the
model uncertainty of action effects (local value of an internal force at a
given cross section) will eventually influence the model uncertainty of
the load-carrying capacity of a statically indeterminate structure. As
shown in the example above, in the classical design approach of struc-
tural concrete, the models used to determine action effects and resis-
tance are not necessarily the same. The analysis of action effect is
typically determined assuming a linear response and neglecting the in-
fluence of cracking (constant uncracked stiffness) whereas, for calcula-
tion of the resistance, cracking and the nonlinear response of both
concrete and steel reinforcement are considered. As previously dis-
cussed, this does not have consequences at ultimate for ductile re-
sponses, but can have implications for brittle redundant systems.

With respect to the quantification of the local resistance model un-
certainty, a random variable can be defined by comparing the experi-
mentally measured local resistance with the theoretical resistance. It
shall be noted that the experimental local resistance data is usually
obtained by experimental programmes on statically determinate struc-
tures, so that uncertainties related to the calculation of internal forces
are not relevant. The local resistance model uncertainty is thus analysed
through the following ratio:

Rexp

1
Rcalt' ( )

ORtocal =

where 0z jocq is the random variable for the local resistance model un-
certainty, Rey, is the experimental local resistance and Ry is the
calculated resistance.

For the action effect model uncertainty, the random variable 6 is
defined in analogy with Og jocq as:

Eeyp

O =
£ Ecalf

(2

where 6 is the random variable for action effect model uncertainty, Ey,
is the experimental action effect and E.q is the calculated action effect.
The definition of 6 in Eq. (2) has however some inconsistencies because
Eeyxp and E g refer to the local level while the load-carrying capacity of a
structural system (potentially redundant) is governed by its global
response. Due to this reason, it is not appropriate in general to directly
use the variable Eeyy, /E.q for a given cross section to quantify the action
effect model uncertainty. Instead, the global resistance model uncer-
tainty variable of a statically indeterminate structure can be defined as:

Oglobar = Gewp 3)
q.

calc

where Ogopq refers to the random variable for the global model uncer-
tainty, qexp to the experimentally measured load-carrying capacity of a
statically indeterminate structure in terms of load factor at ultimate load
bearing capacity and g.q. to the calculated load-carrying capacity. As
shown in the previous case study, the global model uncertainty contains
the model uncertainty of action effects and the model uncertainty of
local resistance. The model uncertainty of action effects can then be
quantified by removing the model uncertainty of local resistance from
that of global resistance.

3. Experimental programme

To investigate the flexural response of TRC structures and to provide
basic test data for investigating the action effect model uncertainty of
TRC in statically indeterminate structures, an experimental programme
was performed. The test series consisted of nine thin slab strips tested
under three-point bending load condition. The tests were performed at
the Structural Concrete Laboratory of Ecole Polytechnique Fédérale de
Lausanne (Switzerland) and were performed in seven consecutive days
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Table 1
Mechanical properties of the mortar (mean values and coefficients of variation
CoV).

Value CoV
Elastic Modulus of mortar E., [GPa] 31.0 2.58 %"
Mortar tensile strength feem [MPa] 4.4 9.43%
Mortar compressive strength fem [MPa] 128.5 10%

D values according to [29].

Table 2
Mechanical property of textile reinforcement in longitudinal direction (number
of tests, CoV in brackets).

Fabric CF01 CF02(#, CoV)
Net cross section Ggex [mm?] 0.85 1.70

Nominal perimeter Utex [mm] 7 11

Grid spacing €rex [Mm] 20.0 17.0

Strength frex,m [MPa] 1833 1833 (5, 7.41%)
Elastic modulus Eex,m [GPa] 228 228 (5, 10.9%)

D calculated on the basis of the nominal value of the net cross section

at an average age of 301 days (to ensure constant mechanical
properties).

3.1. Mechanical properties of the materials

The mortar mix described in [29] was used for the experimental
programme, composed of nearly 40 % binder and nearly 60 % aggregate
(maximum aggregate size 1.6 mm). All specimens were cast on the same
day following an identical procedure and preparation of the mix.
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Compressive tests on the mortar produced in three batches were carried
out on 70 x 140 mm cylinders tested at the same period than the beam
specimens. The mean value of the strength f, of 14 compressive tests is
given in Table 1. As for the elastic modulus and tensile strength of the
mortar, values were derived on the basis of f, value according to the data
of [29] (results are provided in Table 1).

The textile fabrics were carbon fibre (CF) meshes. Two types of
fabrics were used (named CF01 and CF02 in the following), both coated
with epoxy and with a layer of quartz-sand applied to the surface, but
with different net cross section area of roving (details on the geometry
and main properties can be consulted in [29]). The mechanical prop-
erties of the textile fabric are given in Table 2. Bare textile (single rov-
ings extracted from the fabric grid) were also tested in tension.
Consistent with what has been observed by Valeri et al.[29], it was first
observed a straightening phase of the rovings, followed by a linear
response characterized by the tangent modulus of elasticity of the fila-
ment (Egx,m) until its tensile strength (frex,m)-

3.2. Specimens and experimental results

The specimens had a rectangular cross section (250 mm-width and
60 mm-height) with varying span L (refer to Fig. 3 and to Table 3). All
specimens were cast following the same procedure and dimensions. As
the tested span length was different (Table 3), variable overhang lengths
resulted (L,; and L,y in Fig. 3). These overhangs varied between 0.3 m
and 1.2 m. Since the self-weight of the beams is relatively small
compared to the failure load, the influence of the overhang length in the
overall response can be considered as negligible.

The specimens were reinforced with the textiles CFO1 or CF02, that
were intentionally not kept with a constant cover, but only attached at

(a) hydraulic jack (150kN)
:
load cell S
I b =250 mm
testbeam | ‘
: ! \“::::]\Textile reinforcement
steel hinge :
L()I L LO2
I T I 1
(b) TBI TB2 TB3 gt
d, =464 n=22 d, =499 n=22 d =514 n=22 I
R - - = == ===z =3=___ _ - - - - s =2s=2=z=2=22=___ | <y
TB4 gt
d,=500 n=22 I
. £ e e =2 === 323 - - =~ <y
TB7 d_=453 n=21 TBS d =515 n-30] S}|TBY 4, -33n-3 |51 &I
----:::E:W:::_r-- o ' % ;;;;::;;::s:: = 1l
= ===s=z===3 === == = Q,
Measured roving position
b =250 | 1 b =250 || b =250 |

Fig. 3. Specimens: (a) test setup; and (b) representative cross section of the tested specimens (units: [mm]).
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Table 3

Main parameters of the bending specimen and measured flexural resistance at maximum load.
Name L [m] Textile type Number of rovings n, Qgex [mm?] domin dinax daye Pave %] a/daye Mexp

[mm] [mm)] [mm] [kKNm]
TB1 1.2 CF02 22 1.7 42.3 50.9 46.4 0.32 12.9 2.36
TB2 1.15 CF02 22 1.7 46.4 53.8 49.9 0.30 11.0 3.33
TB3 1.1 CF02 22 1.7 49.0 55.0 51.4 0.29 11.0 3.64
TB4 2.1 CF02 22 1.7 44.5 54.7 50.0 0.31 21.5 2.77
TB5 2.2 CF02 21 1.7 44.6 52.2 47.9 0.30 23.0 2.23
TB6 2.4 CF02 22 1.7 49.8 54.8 52.2 0.29 22.0 3.04
TB7 2.4 CF02 21 1.7 38.0 49.0 45.3 0.27 25.0 1.99
TB8 2 CF02 30 1.7 48.3 54.9 51.5 0.40 19.4 3.58
TB9 0.63 CF01 39 0.85 29.9 46.3 38.3 0.35 8.2 1.63
20 4. Bending test analysis
T T T T T

0 20 40 60 80 100 120
o [mm]

Fig. 4. Measured load—deflection responses of tested specimens.

its ends. This allowed the textile to vary its position during casting, in
order to investigate the influence of construction tolerances and casting
procedure in the structural response. After the bending tests were con-
ducted, saw-cuts were performed on the specimens near the cross sec-
tion failing in bending (representative cross section) and the exact
position of the rovings are measured. The illustration of the measured
roving positions in each cross-section is given in Fig. 3b. Since the
effective depth was not constant over the beam width, the average
flexural depth dgy. and the average flexural reinforcement ratios pgy. are
defined as follows:

nr

d; 1, Qiex
dpye = =1 andp,,, =
ave
n, bd,,.

4

where n, refers to the number of rovings in a cross section, d; to the
flexural depth of each roving, a, to the net cross section of a single
roving and b to the cross section width. Details are given in Table 3.

Digital Image Correlation (DIC) was performed at the sides of the
specimens and used to track their displacement fields following the same
methodology as described in [29]. The result of DIC were checked with
continuous readings obtained by means of a Linear Variable Displace-
ment Transformers (LVDT) attached to the top side of the mid-span of
each specimen. The load-deflection (F-6) relationships recorded for the
tests are shown in Fig. 4 (§ based on DIC measurements). For low levels
of load, a linear response is observed until the cracking moment is
reached. Once cracking develops, the response becomes softer, with a
stiffness depending on the reinforcement ratio and slenderness. Failure
occurred in all specimens in bending in a brittle manner due to rupture
of reinforcement.

The flexural response of TRC can be modelled by considering a linear
response of both concrete and textile reinforcement and assuming that
plane sections remain plane after deformation (Bernoulli-Navier hy-
pothesis), see Fig. 5a. This assumption has been extensively investigated
and validated in previous investigations [30-36].

Due to the significant variation of the roving flexural depth in some
cross sections, each roving is modelled separately for calculation of the
response. Failure occurs in all cases when the outermost roving reaches
its tensile strength, as it fails in a brittle manner and the rest of rovings
are not capable of withstanding their increase of force. With respect to
the properties of the rovings within the concrete section, their strength
and stiffness have to be reduced with respect to bare textile properties
(in order to account for the delayed activation of stresses and local
damage [29,37-39]). This will be performed in the following by means
of two distinct efficiency factors [40,41]. The first, named n, reduces the
effective textile tensile strength with respect to the bare textile. The
second, named 1g, reduces the effective modulus of elasticity of the
textile.

The value of the efficiency factors is determined in this work by
means of calibration with test results, in order to have an average of
measured-to-calculated values equal to 1.0 both in terms of strength and
deformation at failure. This yields the value ns = 0.91 and ng = 0.79.
Such approach is adopted as the aim of this paper is the statistical
analysis of the TRC response (alternative approaches based on physical
models to determine such efficiency factors can be consulted elsewhere
[29,41]). It can be noted that the calibrated value of 1 is lower in this
case than the value of ny, which is uncommon in comparison to the
results from other researchers [29,41]. This fact can be partly grounded
on the fact that the roving position was variable through the length of
the specimens and thus the geometry (stiffness and resistance) of the
governing cross section in bending is not necessarily constant through
the length of the specimen. Also, the influence of the duration of the
structural tests, different to that of the material characterization tests, is
accounted for in these coefficients which can be relevant for the concrete
stiffness.

The calculated load-deflection curves (F-5) are plotted in Fig. 5c
together with the measured results. The comparison between the tested
ultimate resistance Reyp, the calculated one R 4 and the corresponding
maximum deformation of each beam is givens in Table 4. The compar-
ison shows that the CoV of the resistance (5.13%) is relatively low
(lower than those reported by other authors [12]).

5. Response of statically indeterminate systems of TRC and
model uncertainty of action effects

As previously explained, the response of statically indeterminate
systems and the corresponding action effect model uncertainties can be
significant for the safety format calibration, particularly when a brittle
response can be expected. This is for instance the case for TRC, whose
response was experimentally examined in the previous Section with
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Fig. 5. (a) Model assumptions for flexural response; (b) material constitutive law of concrete and textile reinforcement and (c) calculated and experimental

load-deflection curves.

Table 4

Three-point bending test results.
Specimen Rexp Reaic Rexp/ O exp S cale S exp/d

[kN] [kN] Reale [mm] [mm] cale

TB1 8.4 8.5 0.99 26.4 26.5 1.00
TB2 13.2 12.2 1.08 26.3 21.9 1.20
TB3 16.5 16.0 1.03 28.8 25.6 1.13
TB4 5.8 5.8 1.00 76.3 77.6 0.98
TB5 4.3 4.6 0.93 80.6 87.0 0.93
TB6 5.6 5.1 1.10 116 88.4 1.31
TB7 3.4 3.5 0.97 106.4 113.3 0.94
TB8 7.4 7.7 0.96 7.4 7.7 0.96
TB9 11.7 11.3 1.04 5.7 8.0 0.71
Average 1.0 1.0
cov 5.13% 17.10%

reference to statically determinate structures. In order to investigate the
response of statically indeterminate TRC structures, it will be presented
in this Section a large database obtained by assembling the test results
on determinate members. This database will eventually be used to create
a probabilistic model of the action effect model uncertainty.

The main idea to simulate the response of statically indeterminate
members based on the response of statically determinate ones is shown
in Fig. 6a (details for a worked example are provided in annex B). As it
can be seen, a redundant system is generated by assembling two simply

supported beams connected at mid span. Such statically indeterminate
system will be referred to in the following as an assembled cross-beam
system. Due to the symmetry conditions of the system, each compo-
nent beam has the same load-deflection response as in a three-point
bending test and the response of the complete system can be obtained
by the superposition of the load-deflection relationship of the two
component beams, see Fig. 6b.

5.1. Action effect model uncertainty for different types of structural
analyses

In the following, the experimental results on the assembled cross-
beam systems are compared to three types of structural analyses:

o Linear Analysis assuming UnCracked stiffness (LAUC in Fig. 6b and
c).

e Linear Analysis assuming Fully-Cracked stiffness (LAFC in Fig. 6b
and ¢).

e NonLinear Analysis assuming uncracked and cracked behaviour.
This analysis is conducted assuming a trilinear moment-curvature
relationship and the actual extent of cracked and uncracked regions
(NLA in Fig. 6b and c).

In order to quantify the model uncertainty of action effects, the local
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Fig. 6. (a) Assembled cross-beam system test set-up; (b) load-deflection relationship of the cross-beam system obtained by superposition of both responses of its
component beams and (c) considered moment-curvature (M-y) relationships for different structural analysis models.

Table 5

Tailored efficiency factor ) for the basic beams.
Specimen TB1 TB2 TB3 TB4 TBS TB6 TB7 TB8 TB9
ny 0.90 0.98 0.94 0.91 0.85 1.00 0.88 0.87 0.95

resistance model uncertainty will be removed from the global model
uncertainty. To do so, tailored values of the efficiency factor 1y are
calibrated for each individual beam, in order to match the experimental
resistance, see Table 5. The action effect model uncertainty for each
analysis method can then be defined as:

Ossaue = o2 ®)

Op 1arc = % (6)
(O

0, = 7

E,NLA Onia (@)

where Qe refers to the experimental resistance of an assembled cross-
beam system by superimposing the experimental response of its two
component beams. The terms Qrauc, Quarc and Qnra refer to the global
resistances (load-carrying capacities) of the assembled cross-beam

10

system calculated with LAUC, LAFC and NLA methods respectively and
Ok 1auc, Ok 1arc and O nia refer to the corresponding action effect model
uncertainty variables for the three types of analysis.

5.2. Data of action effect model uncertainty for different types of
structural analyses

By combining the nine bending tests of basic beams presented in
Section 3, a total of 36 assembled cross-beam systems can be generated.
The resulting action effect model uncertainty data is plotted in Fig. 8a.
The assembled experimental load-deflection curves of six representative
cases and the corresponding load-deformation curves with LAUC, LAFC
and NLA are shown in Fig. 7. A summary of the results of all the
assembled cross-beam tests is also provided in Table 6 and plotted in
Fig. 8a. As it can be noted, both NLA and LAFC give very close prediction
to the actual resistance, while LAUC has a relatively larger scatter,
suggesting that the simplifications made about the uncracked stiffness of
the structure components result in a higher model uncertainty for
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(a) GELAFC (b)
38 Mean value= 1.02
p= CoV=4.01% =
=
g 2t = A 2t
o
=
£ of ol
3
Z
i<
_g _2 - -2 r -
2 »
07 08 09 1 1.1 1.2 1.3 07 08 09 1 1.1 1.2 1.3
0 0
© 4
2
‘g’ -1
84 = QE,LAFC
Té -1.5
:2 2 GE,LAUC
=
<
T 25 0.
5 ENLA
n

Fig. 8. Quantile-Quantile plot for action effect model uncertainty sample data of (a) cross-beam of two components; (b) cross-beam of two to five components; and

(c) detail of tail region for cross-beam of two components.

statically indeterminate structures. In addition, NLA allows reproducing
the different stages of response (uncracked or partially cracked) in a
realistic manner.

To further increase the size of sample for action effect model un-
certainty data, the number of components of a cross-beam system can
still be increased in order to generate more combinations. Following the

11

same methodology, assembled cross-beam system composed of three to
five components are further investigated. In total, 372 different cross-
beam systems are generated and the resulting action effect model un-
certainty data is plotted in Fig. 8b. A summary of the statistics of the
assemble cross-beam tests is provided in Table 6. It can be observed that,
with the enlarged database, the difference between the model
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Table 6
Statistics of the cross-beam system tests with two components and two to five
components.

Number of Number of Load effect ~ Variable  Average CoV
components  assembled tests  analysis value
Two 36 LAUC O auc 1.05 8.51%
36 LAFC Ok LaFC 1.02 4.01%
36 NLA Onra 1.01 3.35%
Two to five 372 LAUC O auc 1.14 11.01%
372 LAFC Ok 1aFC 1.06 4.47%
372 NLA Onra 1.03 3.39%
800 — T T T
3
g 600 r eE,LAUC,num 1
g
g 400 . HE,LAFC,mlm ]
[
o
-
E 200
o}
@]
0
0.8 1 1.2 1.4 1.6
0

Fig. 9. Histogram of the 0g1aucnum and Ograrcmum data from the numerical
assembled cross-beam system case study.

Table 7

Statistics of the numerical cross-beam system tests with two components.
Number of fictitious Load effect Variable Average cov
tests analysis value
1000 LAUC OF LAUCnum 1.06 11.21%
1000 LAFC OF LAFC.num 1.00 1.66%

uncertainty data of the NLA, LAUC and the LAFC method is more pro-
nounced, which confirms that the NLA and LAFC result in lower level of
action effect model uncertainty than the LAUC.

As shown in Fig. 1, the action effect model uncertainty of statically
indeterminate system results from multiple sources as: the uncertainties
related to the structural modelling of action effects; the uncertainties in
material properties influencing action effects; and the uncertainties in
geometrical properties influencing action effects. The result shows that
NLA yields to the lowest CoV level, which signifies that NLA can
significantly reduce the uncertainties related to the structural modelling
of action effect. Comparing the tail region of NLA, LAUC and LAFC from
the Quantile-Quantile plot [42] (vertical axis referring to quantiles in a
standard normal distribution) of Ognia, Oprarc and Ograuc data (see
Fig. 8a) it seems however that in the tail region there is no significant
difference between these three distributions. This is explained by the
fact that the tail region is composed only of results concerning two
beams (specimens 6 and 9) influencing the response of all methods to
evaluate the internal forces, see Fig. 8c.

6. Limits of applicability of linear analyses assuming uncracked
and fully-cracked behaviour

The analyses on statically indeterminate structures based on the
assembled cross-beams are based on the three-point bending tests data
tested within this research program. This implies that only a limited
range of the basic design variables has been explored. In this Section, the
applicability of LAUC and LAFC will be investigated for a wider range of
design cases.

12
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To that aim, the same methodology of the assembled cross-beam
system is used in this section. The basic data for the three-point
bending test is in this case estimated on the basis of a non-linear anal-
ysis (tri-linear moment-curvature relationship). This approach was
previously observed to lead to the most realistic results, and to repro-
duce the various regimes of response (see Fig. 7). A series of numerical
assembled cross-beam system case studies are generated by varying the
span L, the cross-section height h, and the textile reinforcement cross-
section area Ay of the component beams. By comparing the structural
analysis result (global resistance of the structures) from the LAUC and
the LAFC with that of NLA, the limit of applicability of LAUC and LAFC is
further examined.

6.1. Range of design parameters of numerical case study

In the numerical cases, assembled cross-beam systems with two
component beams with rectangular cross-sections (refer to Fig. 6) are
studied. In order to investigate the influence of the variation of relative
stiffness between the component beams, the dimensions of the first
component beam in the assemble cross-beam system is kept constant
and the dimensions of the second beam are varied in the selected range.

For all the component beams of the assembled cross-beam systems,
the cross-sectional width is kept constant (b = 250 mm). The material
parameters are also kept constant, adopting the same material proper-
ties as for Section 3. To simplify the simulation, all textile re-
inforcements in a given beam are considered to be aligned at the same
depth. Three independent parameters are used to characterize the beams
in the numerical cases: the span L, the cross-section height h, and the
textile reinforcement cross section area Ay,. The vector composed of the
three design parameters form the design vector X, for a given
component beam:

Xnum = [L7 /’l,A,“} (8)
For a given component beam, the other parameters are dependent on the
values of its design vector Xp,,: the cross-sectional effective depth of a
given component beam (d) is assumed to be proportional to the height h

with a constant ratio d = 0.85 h and the reinforcement ratio p is defined

asp :%;‘.

In each numerical case, two beams are assembled. The design vector
of component beam A is always kept constant as Xpyma = [LA, ha, Atex,A] s
with Ly = 1.7 m, hy = 60 mm and Az = 66.3 mm?> (resulting in py =
0.52%). The design vector of component beam B (denoted by Xum 5 ijk
with ij,k = 1-10) is varied. The design parameters of beam B are varied
within the following range: Lg; = (1.0-4.0) m; hg; = (30-120) mm and
Apex gk = (23.8-142.8) mm? , resulting in ppjx = (0.09-2.24)% (i,j,k =
1-10). For each parameter, ten equally spaced values in the ranges
specified are considered, leading to a total of 1000 cases. For example,
for the case of [i,j, k]=[1,1,10], Xpumpjk = [Lp1,RB1,AtexB10], With Lg;
= 1.0 m, hg; = 30 mm and Agyxp 10 = 142.8 mm? (resulting in pg =
2.24%).

For each case, the resistance of the assembled cross-beam system
analysed with LAUC and LAFC (refer to Annex B for the detailed analysis
method) are compared with that analysed with NLA in order to get the
corresponding action effect model uncertainty data:

Onia

Ok 1AUCum = 0 (C)]
LAvC

Ok LAFCum = QQ N 10)
LAFC

It should be noted that 6giavcnum and Ogiarcmum only contains un-
certainties related to the structural modelling of action effects and are
thus different than the definition of 0g1auc and 6garc in the previous
section (Section 5.1 Egs. (5)—(6)).
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Fig. 10. Results of 0 jaucnum and 6g rarcum for cases with hg = 80 mm.

Table 8
Probabilistic modelling of basic random variables for safety format calibration of
TRC.

Uncertainty ~ Variable Distribution Mean  CoV Standard
type Value deviation
Material Textile Lognormal  fiexm 15% -
reinforcement [43] [29]
tensile strength fie,
Concrete Lognormal  nifom  15.6% -
compressive [43] [18]
strength f,
Geometrical  Flexural depth d Normal [43]  dpom - 3 [mm]
[12]
Model Resistance model Lognormal 1.0 10% 0.1
uncertainty6g jocal [43] [12]

6.2. Results of the case study

The histograms of the resulting 6g 14uc,num and g rarc,num data for all
cases are plotted in Fig. 9 and the statistical values are given in Table 7.
It can be observed that, in general, the LAFC results in smaller scatter in
the action effect model uncertainty.

To have a better understanding of the limit of applicability of the two
methods, the resulting 0g 1Auc num and Og Larc,num for the cases with hg =

@ | | | '
1.3 1

Viewir 1.2+ 1
1.1

15 20 30 40 50 60
d  [mm]

nom

4.
Ad[mm]z_

80 mm are plotted in Fig. 10. As it can be seen in this figure, 6g ravuc,num
has significantly higher variation than 8z rarc num-. For the cases when the
reinforcement ratio of both beams is similar, the LAUC method yields a
O LAUCc,num Value close to 1, but in a wide range of cases the value of g,
rauc,num deviates significantly from 1. On the other hand, the LAFC
yields in most cases Ograrcnum values close to 1. This confirms the
applicability of the LAFC method in general. The result of the LAFC only
deviates significantly from the expected value when the reinforcement
ratio of Beam B is close to the minimum reinforcement ratio for bending.
This means that a significant portion of the beam remains uncracked at
failure and thus, the fully cracked assumption deviates from the actual
response. For practical purposes, this situation can be avoided by
requiring a reinforcement ratio higher than the minimum. It is also
interesting to notice that in the cases where the two component beams
have the same reinforcement ratio (pg = pa = 0.52%), despite the
variation of other parameters, the result Ogiaucnum and Ograrcnum
values remain close to 1. This is because the ratio between the uncracked
stiffness of the two beams are the same as the ratio between their fully
cracked stiffness in these cases.

As a conclusion from the previous considerations, it can be observed
that, unlike for ordinary reinforced concrete structures, it is not advised
to use the LAUC method to perform action effect analysis for TRC
structures. A LAFC can, on the other hand, be applied provided that
sufficient amount of flexural reinforcement is provided. It should also be

® [ | | | _

0 1
15 20 30 40 50 60
d ~ [mm]

nom

Fig. 11. Estimated values as a function of nominal effective depth: (a) y,,,;; and (b)Ag4.
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Fig. 12. (a) Geometry of the investigated cross section and (b) achieved reliability index of the invesitigated bending case with the two safety format proposals.

Table 9
Key design parameters for the representative cases.
Variable Srex,m [MPa] fem [MPa] b [mm] h [mm] dnom [mm] P
Value 1800 150 250 18.75-75 0.8h 0.1% — 0.9%
Variable type Random variable Random variable Deterministic Deterministic Random variable Deterministic
noted that the previous comments focus on the cases with bending from specific tests (products can have highly variable properties). The
failure governed by rupture of the textile reinforcement (covering also probabilistic modelling of the material strength variables used in the
cases with low levels of axial compression forces). Other failure modes safety format calibration in this paper is summarized in Table 8.
(such as failures for very high levels of compression forces or shear)
remain outside of the scope of this paper (covered by other partial safety 7.1.2. Geometric uncertainties
factors). Since the case of bending is considered and the material strength of
textile reinforcement is calculated on the basis of the nominal value of
7. Safety format of TRC structures the roving area, the governing geometrical value is the effective
geometrical depth (d). Its uncertainties are mainly related to how the
In this section, the reliability verification framework of Eurocodes reinforcement is fixed during casting, to the type of the member (with
[9] is used to calibrate the safety format for TRC structures on the basis flanged or full cross section), to the casting and control procedure and to
of probabilistic reliability theory. Similar to the case of reinforced con- the type of reinforcement (stiff or soft). Statistical data of the flexural
crete structures, a number of uncertainties (associated to material, ge- depth variable can be found in literature. According to [12], a mean
ometry and modelling) shall be accounted for in the partial factor for value of —0.2 mm and a standard deviation of 2.0 mm of the measured
TRC. In addition, due to the brittle behaviour of TRC structures, it is data is observed for the deviation (error) of the flexural depth from
necessary to discuss if additional safety considerations are needed for nominal values (d-dnom). This shows that it is possible to have relatively
the model uncertainty of action effects (a common situation with respect good quality control of the position of the textile reinforcement in TRC
to design of other reinforced concrete elements failing in a brittle structures. For practical applications of TRC structures, the distribution
manner by punching or second-order effects). In the following, the parameters of the flexural depth random variable will be considered
probabilistic modelling of the basic uncertainties is discussed and two related to their quality control and allowable execution tolerance. Since
types of Safety formats are proposed for TRC structures. The efﬁciency of the total thickness of TRC structures is in general much smaller than in
the proposed safety formats for TRC structures is discussed based on the ordinary concrete structures, the assumptions of execution tolerances of
reliability analysis of representative cases. concrete structures are not considered applicable to TRC structures.

Referring to the data from [12] and also taking the efficiency of the
textile reinforcement into account, a tolerance of +/—5 mm for the error

7.1. Basic uncertainties in the design of TRC structures of effective depth (d-dyom) Will be assumed in the following. The error of
effective depth (d-dyom) is assumed to follow a normal distribution, with
7.1.1. Material uncertainties a mean value of 0, and —5 mm corresponds to the 5% fractile. Based on
Two material strength basic variables are involved in the reliability the normal distribution assumption, the standard deviation of d-dyom can
analysis problem of TRC structures: the tensile strength of textile rein- then be calculated as 5/1.645 = 3.0 mm. Since dpom is a deterministic
forcement and the concrete compressive strength. The material strength value, the flexural depth variable d has the same standard deviation (3
variables are assumed to follow lognormal distribution according to the mm) as d-dom, see Table 8. It should be noted that, with a constant value
recommendations in [43]. For the concrete compressive strength, the of execution tolerance for the flexural depth, the CoV of the flexural
distribution parameters provided in the second generation of Eurocode  depth variable decreases with the increasing thickness of the structure.
PprEN1992-1-1:2020 [44] are used, where the coefficient of variation The same phenomenon has also been noticed in reinforced concrete
(CoV) is taken as 15.6%, which accounts for both the uncertainty in structures in the second generation of Eurocode prEN1992-1-1:2020
concrete cylinder strength and the uncertainty in the in-situ strength [44].
efficient factor n; [44]. For the distribution parameters of the textile
reinforcement tensile strength, the statistics of the data from [29] are 7.1.3. Model uncertainties
used, where the CoV of the tensile strength of textile reinforcement is Two types of model uncertainties are considered for the partial factor
taken as 15% (which accounts for the uncertainty in the single roving calibration of TRC structures: (i) the resistance model uncertainty and
tensile strength based on test results). These distribution parameters are (ii) the action effect model uncertainty. For the resistance model un-
consistent with data from other researchers [12]. The uncertainty in the certainty variable, Og jocqr, the model used to analyse the tests presented
efficiency factor 1y of textile reinforcement is not accounted for in the in this paper showed a fairly low CoV (equal to 5.13%). Such low value
material uncertainty, but in the uncertainty of the resistance model results partly from the fact that a calibrated value of the efficiency factor
(calibration factor). It should be emphasized that with respect to the ns was adopted. When designing TRC structures, a general value of this
statistical properties for the textile reinforcement tensile strength, they efficiency factor shall be adopted (not calibrated based on tests),

should be based on the data provided by the manufacturer or derived
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potentially leading to a higher value of CoV of the model uncertainty
variable. Based on the work of other researchers [12,13,16], a reason-
able value for the CoV can be considered as 10%, that will also be used in
the following, see Table 8.

For the action effect model uncertainty, as previously explained in
Fig. 1, it is theoretically accounted for in the partial factors for the ac-
tions provided in Eurocodes. It shall yet be noted that the model un-
certainty of action effects accounted for by these partial factors depend
neither on the material response (brittle or ductile) nor on the structural
analysis methods (LAUC, LAFC, NLA or others). For TRC structures, it
has been shown in this paper that when using NLA or LAFC for a
redundant structure, the model uncertainty of action effects is relatively
low compared to the values reported in Section 2.2 and to other un-
certainties reported in Table 8 (maximum CoV = 4.47% for the inves-
tigated cases). This is however not the case for LAUC (maximum CoV =
11.01%). Based on this consideration, it is proposed that both NLA and
LAFC methods can be used to calculate the action effect (internal forces)
of TRC structures without the need to adjust the action effect model
uncertainty level. LAUC cannot however be used, unless additional
specific considerations were made on the safety factors.

7.2. Safety format proposals

Based on the characteristic of basic uncertainties involved in the
resistance of TRC structures, two types of safety formats are proposed.

7.2.1. Safety format I: Partial factor y,,,; for the tensile strength of textile
reinforcement and consideration of nominal dimensions

The first proposal for the safety format is based on the use of a partial
factor for the strength of the textile and the use of nominal values for the
geometric dimensions. This approach corresponds thus to current design
practice for conventional reinforced concrete structures, but providing a
tailored partial safety factor for the strength of the reinforcement.

The calculation of the value of the partial safety factor can be per-
formed assuming that the resistance function R can be approximated by
a lognormal distribution (detailed information about such an estimation
is provided in Annex A). Thus, the partial safety factor y,, ; for calcu-
lation of the design value of the tensile strength of textile reinforcement
(frexd = frex.ck/7texs) can be calculated based on the approximated value
of the CoV of the resistance, Vy:

7, _ f;e.r.ck
o T
e flex.d

= exp (aR/}Ig, Vi — 1.645\/_/,”) an

Where f. 4 refers to the design value of the textile tensile strength, fi.,
to its characteristic (5% fractile) value, ag to the FORM sensitivity factor
for the resistance (adopted equal to 0.8 [9]), Prgt tO the target reliability
index and f,,, = 3.8 for structures with medium consequence class and a
reference period of 50 years at the ultimate limit state [9], Vi to the CoV
of the resistance variable and Vpey the CoV of the material (15% ac-
cording to Table 8). With respect to Vg, its value can be approximately
estimated (detailed information about such an estimation is provided in
Annex A) by considering the CoVs for the material, geometrical and
model uncertainties (refer to Table 8) as:

Vem Ve VLA VS

The general format to calculate the design value of the resistance (Rq)
can thus be established as:

Jiex.ck Jex
ﬂ‘, L‘, dm)m}

Viex1 V¢

(12)

R, =R 13)

Where f refers to the characteristic compressive strength of concrete,
yc to its partial safety factor (1.5 according to Eurocode prEN1992-1-
1:2020 [44]) and dpem to the nominal value of the geometrical
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dimensions.

Detailed information about the safety format calibration method is
provided in Annex A. As it can be noted, the estimated value of Vi varies
with the change of the nominal effective depth of the structure (see
Table 8). For the investigated range of the nominal effective depth
(15-60 mm), the estimated value of Vi ranges between 0.19 and 0.27
(see detailed results in Annex A). It should be noted that according to
prEN1990:2020 [18], when Vj is higher than 0.20, the approximated
Eq. (11) is not applicable for the partial factor calibration anymore. In
this section, however, Eq. (11) is still used to make a first approximated
calculation of the partial safety factor. Its effectiveness will be verified
by the reliability case study in Section 7.3. Considering the wide
applicable range of the safety format, referring to the approximated
estimation values of Vg, a relatively conservative value of Vg = 0.225 is
selected in the following and the value of the partial factor y,,,; is then
calculated as:

Yiews 2 1.55 a4
It should be noted that the partial factor for concrete compressive
strength y, = 1.5 from Eurocode prEN1992-1-1:2020 [44] is also
adopted in this research. The effectiveness of this proposal will be
verified in Section 7.3 by calculating the actual achieved reliability level
of representative cases.

7.2.2. Safety format II: Partial factor y,,, ;; for the tensile strength of textile
reinforcement and consideration of design values for the dimensions

As shown in Annex A, for thin members, the geometrical un-
certainties (related to the effective depth) can become governing. For
this reason, it makes sense to separate the geometrical uncertainties
from material and model uncertainties as previously discussed by
[12,13]. Considering the general form of the limit state function and the
probabilistic models of the basic uncertainties (see details in Annex A),
the material and model uncertainties will be lumped into one partial
factor y,, y applied to the tensile strength of textile reinforcement. With
respect to the geometrical uncertainties, they will however be consid-
ered apart, by means of a design value of the effective depth (this
alternative possibility using design values of geometrical dimensions is
already given by prEN1992-1-1:2020 [44]). The partial safety factor can
thus be estimated with the help of FORM sensitivity factors as:

= exp(, [, + a3 \[V2 + VEaup,, — 1‘645Vﬂ”>

Details on this derivation and the values for the various parameters are
given in Annex A of this paper. With respect to the design value of the
effective depth, it is calculated by reducing the nominal value by a
distance of Ag:

_ ftex. ck

ex. - (1 5)
Viex1 Fond

Agesign = Anom — Da (16)
whose value results (see Annex A for details):
Ad = adakﬂ,grad (17)

Based on the safety elements defined above, the general format to
calculate the design value of resistance can be defined:

f v.ck Je,ck
Rd = R{L7 . >ddexign}
Yiexit Yc
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By applying this methodology, the value of the partial factor y,,, ; and A4
can be derived for the given range of dyom, as shown in Fig. 11 for
representative cases.

It can be observed that the estimated value of y,,, ; ranges between
1.13 and 1.33 and the value of Ajbetween 6.8 mm and 2.4 mm. As a
reasonable and safe estimate, the following values are suggested:
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Yiexs = 1.25 19

Ay ~ 6mm (20)
The effectiveness of this proposal will be verified and compared with
Proposal I in Section 7.3 by calculating the actual achieved reliability
level of representative cases.

7.3. Comparison and verification of the two safety format proposals

A series of representative cases are investigated in the following to
compare the previous proposals. To that aim, the classical design
method of verifying at sectional level is considered, implying that the
influence of statically indeterminate structures is taken into account by
the partial factor on actions. The geometry of the studied cross section is
shown in Fig. 12a. The range of the key design parameters used in this
case study series is listed in Table 9. The value of cross-section height h
and reinforcement ratio p are varied in a deterministic manner to
generate a series of different cases.

For the reliability analysis, the basic uncertainties introduced in
Section 7.1 (listed in Table 8) are accounted for. The general form of the
performance function g is defined as:

8= HR.lz)calR<f;a7fc7 d) - Rd (21)

Based on the safety format proposals, the design value of the resistance
for the two safety formats can be calculated using Eq. (13) and Eq. (18)
and the reliability analysis is performed using FORM to calculate the
actual achieved reliability fB,4i..q fOr the two types of safety formats as:

Prob(g < 0) = (B cpierea) (22)

Where Prob () refers to the probability function, g to the performance
function, ® to the cumulative probability function of standardized
normal distribution and f,peeq refers to the actual achieved reliability
index for a given case. The reliability analysis is performed with FORM
method and the achieved reliability index from the two safety proposals
are plotted in Fig. 12b.

As it can be observed, the value of the achieved reliability level for
Proposal I, S, pieved > Fanges between 2.12 and 3.66 and the value of the
value of the achieved reliability level for Proposal II, S, pieved s Fanges
between 2.87 and 3.22. Comparing the achieved reliability index for the
two proposals with the target of agfl, = 3.04, it can be observed that in
most of the range of the investigated cases, both safety formats result in
acceptable levels of reliability. However, for Proposal I, when the
effective depth is very low (smaller than 20 mm), the achieved reliability
level is lower than the acceptable level (0.5 target level) [21]. It can
also be observed that the maximum achieved reliability level for Pro-
posal I is even high for large thicknesses, suggesting potentially uneco-
nomic design. Proposal II yields a more uniform level of reliability.

8. Conclusions

This paper investigates on a suitable safety format and analysis
method for Textile Reinforced Concrete (TRC) structures. The results of
an experimental programme on nine TRC slabs are presented and the
implications of a brittle response on the reliability of a structure are
discussed. Its main conclusions are listed below

1. Structures presenting brittle responses (implying limited or none
redistribution capacity of internal forces) can fail for load levels
below those considered for design if the calculation of internal forces
deviates from the actual response (typically, elastic-uncracked
behaviour assumed in the calculation of internal forces). This situa-
tion does not occur for a ductile response and raises questions on the
consideration of model uncertainty of action effects within the Par-
tial Safety Factor Format (PSFF) as considered in Eurocodes.
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2. The analysis of statically indeterminate TRC structures shows that
performing a linear elastic calculation of internal forces considering
fully cracked stiffness properties for all sections is a suitable manner
to estimate the internal forces and response of TRC. This holds true
provided that more than minimum amount of reinforcement are
provided in the structure.

3. Alternatively, using a nonlinear analysis (considering the develop-
ment and extent of cracking) is also a suitable manner to estimate the
internal forces. It is even more accurate than the previous, but
requiring a significant effort for analysis.

4. Estimating internal forces on the basis of the uncracked stiffness of
the sections (as usually performed for ordinary reinforced concrete)
can lead to relatively large deviations on the response and internal
forces of a brittle structure as TRC. Such method shall not be used for
design unless specific considerations were implemented to cover this
increased uncertainty.

5. Since for thin members, the variability of the effective depth can be
significant compared to the mean value, the geometrical un-
certainties can play a major role in calibrating the partial safety
factors for designing structures at ultimate limit state. On the basis of
reliable internal forces (determined by a linear-elastic fully cracked
analysis or a nonlinear analysis), a safety format can be considered
for TRC following the PSFF. Two ways for so doing are detailed in the
manuscript:

o Consideration of a partial safety factor for the tensile strength of
the textile (ygx = 1.55) and nominal dimensions. All uncertainties
(material, geometrical and model) are lumped into the partial
safety factor of the textile.

o Consideration of a reduced partial safety factor for the tensile
strength of the textile (y,, = 1.25 and design dimensions (reduc-
tion of 6 mm in effective depth). In this case, material and model
uncertainties are accounted for in the partial safety factor of the
textile while geometrical uncertainties are considered in the
design dimensions.

o In general, the second safety format is preferable, leading to a
more uniform level of safety.

It shall be noted that the aim of this investigation is to propose a
safety format for designing TRC and a methodology for calibrating the
associated safety factors and parameters. For practical applications, the
values proposed in this investigation (yx and Ag) should be tailored on
the basis of actual values of material and geometrical uncertainties,
which can depend on the material used, production method and quality
control procedure.
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Annex A: Derivation of the safety format proposals for TRC structures

In this annex, the methodology used for the safety format calibration of TRC structures is presented. The annex is based on the semi-probabilistic
reliability verification approach of the Eurocodes [9]. To that aim, the target reliability index f, provided in EN1990:2002 [9] for structures with
medium consequence class and a reference period of 50 years at the ultimate limit state is used (£, = 3.8).

The partial factors used in the semi-probabilistic reliability verification approach of the Eurocodes [9] are calibrated based on the First Order
Reliability Method (FORM) [20,45]. Based on the FORM, to achieve the target reliability level, the partial factor for each basic random variable can be
defined with the aid of the FORM sensitivity factors, which are the directional cosines of the vector between the mean value point and the FORM
design point in standardised normal space.

In principle, independently of the type of safety format selected, the required partial factors to achieve the exact target reliability level are different
for each individual case due to the difference in the shape of the limit state function. The shape of the limit state function depends on the mechanical
model of the corresponding limit state as well as the probabilistic modelling of the basic uncertainties involved in the limit states. However, to simplify
the design procedure, in the semi-probabilistic approach, the values of the partial factors are fixed and selected with the criterion that the achieved
reliability level for representative design cases are as close as possible to the target value. Another important simplification in the safety format
calibration in Eurocodes is to adopt standardised FORM sensitivity factors for the resistance variable and the action effect variable. The FORM
sensitivity factor for the resistance a is assumed to take the value of 0.8 and that for the action effect ag is assumed to take the value of —0.7 provided
that the ratio between the standard deviation of the action effect variable and the resistance variable is within the range of 0.16 to 7.6 [9]. Using these
standardised values makes it possible to separate the task of calibrating the partial safety factors on the resistance side and on the action effect side,
which largely simplified the safety format calibration procedure. On the basis of such simplification, the target for the calibration of the partial factors
for the resistance of TRC structures becomes:

Pl’Ob(R —R; < 0) = Q)(fakﬂ,g,) (A1)

When using the FORM or other reliability methods to calibrate the partial factors, iterative procedures are usually needed. However, under some
conditions, simple analytical solutions can be derived for the partial factors. This can be done by making reasonable assumptions about the form of the
limit state function. The resulting partial factors can eventually then be verified with the FORM or full-probabilistic reliability methods for the
representative design cases. This strategy will be followed in this work when calibrating the safety format for TRC structures.

Considering the basic random variables involved in the resistance of TRC structures, the general form of the resistance function can be assumed as:

R = OrtocaR (fiex: fo: d) (A.2)

The specific form of the resistance function depends on mechanical model of the resistance and also the values of the basic variables.

For calculation of the bending resistance of TRC structures, the methodology presented in Section 3 is considered, based on the Bernoulli-Navier
assumption. The resistance of a cross section can be controlled either by the tensile strength of the textile reinforcement or by the compressive strength
of concrete (but not by the two material strengths at the same time). The cases where the resistance is controlled by concrete strengths are not within
the scope of this paper, as they are similar to conventional over-reinforced concrete structures, and the safety elements for this type of cases are
actually applied through the partial factor on concrete compressive strength. For the cases where the resistance is controlled by the textile rein-
forcement, Eq. (A.2) can be further simplified to the following form:

R= HR,loralR(ﬁzx<, d) (A.3)

It is then reasonable to make an additional assumption considering that the resistance can be approximated by a multiplicative form of the basic
random variables:

R = O jocaiR (frex; d) = ArOr tocaifiexd (A.4)

Where Ap represents a coefficient that depends on the other deterministic parameters related to the resistance. Based on the assumption in Eq. (A.4),
the CoV of the resistance Vi can be calculated approximately as:

Ve [Ve, + Vi + V3 (A.5)

It should be noted that Eq. (A.5) would be a close approximation if all the basic variables follow lognormal distributions, but in this case the flexural
depth d is modelled as a normally distributed variable. In any case, Eq. (A.5) can still be a reasonable approximation for the purpose of estimating the
partial factors. The validity of the above assumptions will eventually be verified by reliability analysis of representative cases with the selected partial
factors.

With respect to the value of Vg, it depends on the nominal flexural depth, and this results in different values of Vi for cases with different flexural
depths. For instance, for the range of d,o, = 15-60 mm, the approximated value of Vg is plotted in Fig. A.la.

Following the same strategy, the FORM sensitivity factors for the basic variables can also be estimated as follows:

2

Qfrex & % (A.6)
Vo T Vi Ve
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2
- A7)
VgR + Vm + Vd

V2
Y P E— (A.8)
Vo + Vi +Va

The change of the FORM sensitivity factors with the flexural depth is plotted Fig. A.1b. It should be stressed that the above analysis is based on two
approximations: the assumption that the resistance can be approximated as a multiplicative form of the basic variables and the assumption that the
resistance can be approximated by a lognormal distribution. From this analysis, it can be observed that the FORM sensitivity factor for the flexural
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Fig. Al. Analysis of the influence of dyon: (a) Vg; and (b) FORM senstivity factors.

depth decreases with increasing depth. It can further be observed that for the cases where the mean value of the flexural depth is relatively small, its
uncertainty becomes dominant. Since the flexural depth follows a normal distribution (see Table 8), in the cases when the uncertainty of the flexural
depth is dominating, the assumption that the resistance follows lognormal can be not valid anymore. This means the estimated FORM sensitivity
factors of the range where the flexural depth is small can deviate from the actual value. Nevertheless, the estimated values can still provide important
information for the safety format calibration problem and can be used as a useful reference. The estimated values of the CoV of the resistance variable
and the FORM sensitivity factors of basic variables are used in the safety format calibration in Section 7 and their effectiveness is eventually verified by
reliability analysis of representative cases.

Annex B: Analysis of an assembled cross-beam system

The aim of this annex is to provide a detailed example of the assembled cross-beam system, following the procedure explained in Section 5. The
assembled cross-beam composed of beam TB1 and TB8 is used for this purpose. For beam TB1 (refer to Section 3 for the values of the parameters of
beam TB1), the uncracked cross-sectional flexural stiffness Elyc is:

3

Elyc = EL.,,,% = 1.40+10° [kNemm?] 23
Thus, the uncracked stiffness of the beam TB1 results:
d\ 48EI ;¢
Q Y€ — 3.88[kN/mm| 24

45’1 = I3
And the cracked cross-sectional flexural stiffness Elz- of beam TB1 is:

ny

b. 3
Elpe = Eon+ Y (di = 00’ E = 1134107 [kNemnr’ 26)
i=1

Where xy refers to the position of the neutral axis (see Fig. 5) and the fully-cracked stiffness of beam TB1 is:

do 48El ¢
(%)LAF(T = I3

= 0.31[kN/mm| 27)

The uncracked and fully-cracked stiffness of beam TB8 can be calculated with the same method. Based on this information, the load—deflection
curves of the assembled system using LAUC and LAFC methods are calculated and plotted in Fig. B.1. For the NLA, a trilinear moment—curvature
relationship is assumed for each beam and the actual extent of cracked and uncracked regions are accounted for. The resultant response of the
assembled system using NLA method and the assembled experimental response are plotted in Fig. B1. for the selected case.
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Fig. B1. Response of the assemble cross-beam system composed of beam TB1 and TB8.
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