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A B S T R A C T   

Design and verification of structures in modern codes of practice account for a safety format, ensuring that the 
probability of failure does not exceed a given threshold. Although specific safety formats are proposed in some 
cases for special types of structures or analyses, most designs and verifications are currently performed on the 
basis of the Partial Safety Factor Format (PSFF). This format is applied to cover different materials and structural 
responses, allowing for a uniform methodology to account for reliability. Such consideration greatly simplifies 
the design process, but raises concerns on its consistency when different structural responses are observed. In the 
PSFF as considered in fib Model Code and Eurocodes, no explicit distinction is made on the value of the partial 
safety factors (for actions or materials) depending on whether a structural system has a brittle or a ductile 
response. This can be potentially inconsistent, as brittle systems have limited or no redistribution capacity of 
internal forces (which can give rise to premature failures if action effects are poorly estimated), while ductile 
systems have large potentials to redistribute internal forces and are thus little sensitive to this issue. 

In this paper, to investigate on the suitability of PSFF for brittle structures, the most suitable manner to 
determine internal forces for brittle elements failing in bending and the corresponding model uncertainties of 
action effects are investigated in detail. The concepts are derived from a theoretical perspective and applied to 
the case of Textile Reinforced Concrete (TRC). This material is a promising development to reduce the footprint 
of concrete construction and to build lightweight structures, but exhibits a very brittle response in bending 
(contrary to ordinary reinforced concrete with usual reinforcement ratios). In this paper, by means of an 
experimental and theoretical investigation, it is shown that following a suitable approach to estimate internal 
forces for brittle systems as TRC leads to a low level of model uncertainty of action effects. This leads to the 
conclusion that, compared to standard design of ductile systems, no additional correction is required for safety 
issues. Following this outcome, the partial factors for TRC structures are calibrated. In addition, due to the 
significance of geometrical uncertainties, a method for designing TRC on the basis of a design value of the 
effective depth (a reduced value accounting for construction tolerances instead of its nominal dimension) is 
eventually discussed, showing that it allows for a more uniform level of safety.   

1. Introduction 

In the last decades, Textile Reinforced Concrete (TRC) has emerged 
as an interesting alternative to reinforced concrete, allowing to reduce 
material consumption and the carbon footprint of cementitious-based 
materials [1–3]. This new paradigm relies on the use of a non-metallic 
fabric as reinforcement (typically made of carbon or glass), which is 
insensitive to corrosion. As a consequence, cover requirements of the 
reinforcement can be reduced to minimum static values, allowing to 

decrease the overall thickness of TRC elements to 10–30 mm. In addi
tion, since no passivation of the reinforcement is required, a low-clinker 
content cement can also be used allowing to reduce the environmental 
footprint of the material related to its CO2 emissions. 

Despite the potential of TRC, its practical use remains still limited. 
This is to a large extent explained by the lack of a consistent design 
framework. Conventional methods widely accepted for reinforced con
crete are potentially not directly applicable to TRC due to its brittle 
nature. This issue is particularly instrumental in the case of statically 
indeterminate structures, where redistributions of internal forces are 
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Nomenclature 

Latin upper case letters 
Atex total area of textile reinforcement in a beam cross section 
AR coefficient in the multiplicative form approximation of the 

resistance function 
Ecalc calculated action effect at a given cross section of a 

structure 
Ecm mean value of the elastic modulus of concrete (motar) 
Eexp experimental action effect at a given cross section of a 

structure 
Ed design value of action effect 
Etex,m mean value of the elastic modulus of textile reinforcement 
EIFC and EIUC fully cracked and uncracked flexural rigidity of a cross 

section 
F load applied to a tested beam 
Frep representative value of action variables 
L span of a beam 
Lo1 and Lo2 overhang of a beam in three point bending test 
M bending moment of a cross section 
MI bending moment of a cross section of beam BI 
MII bending moment of a cross section of beam BII 
Mcr cracking moment of a cross section 
Mexp ultimate bending resistance of a tested beam 
Mhogging maximum hogging moment of a beam according to a linear 

response 
Msagging maximum sagging moment of a beam according to a linear 

response 
MR,hog resistance of a beam cross section to the hogging moment 
MR,sag resistance of a beam cross section to the sagging moment 
Prob () probability function 
Q load applied to an assembled cross-beam system 
QA and QB load transferred to a component beam of an assembled 

cross-beam system 
Qexp experimental resistance of an assembled cross-beam 

system 
QLAFC resistance calculated with Linear Analysis assuming Fully- 

Cracked stiffness (LAFC) 
QLAUC resistance calculated with Linear Analysis assuming 

UnCracked stiffness (LAUC) 
QNLA resistance calculated with NonLinear Analysis (NLA) 
Rcalc calculated local resistance of a structure 
Rexp experimental local resistance of a structure 
Rd design value of resistance 
Utex nominal perimeter of the roving of textile reinforcement 
Vd Coefficient of Variant (CoV) of the flexural depth random 

variable 
Vftex CoV of the textile reinforcement tensile strength random 

variable 
VR CoV of the resistance random variable 
VSd CoV of the action effect model uncertainty 
VθR CoV of the model uncertainty of local resistance 
Xk the characteristic value for a material strength variable 
Xnum the design vector for a component beam in the numerical 

cross-beam system study 

Latin lower case letters 
anom nominal value of geometrical variables 
atex net cross section of the roving of textile reinforcement 
b width of a beam cross section 
d flexural depth of a roving in a cross section 
dave average flexural depth of all the rovings in a cross section 

dmax maximum value of the flexural depth of all the rovings in a 
cross section 

dmin minimum value of the flexural depth of all the rovings in a 
cross section 

ddesign design value for the flexural depth 
dnom nominal value for the flexural depth 
etex grid spacing of the textile reinforcement 
fc the compressive strength of concrete (motar) 
fc,ck characteristic value for concrete (motar) compressive 

strength 
fcm mean value of the compressive strength of concrete 

(motar) 
fctm mean value of the tensile strength of the concrete (motar) 
ftex the textile reinforcement tensile strength 
ftex,ck characteristic value of the textile reinforcement tensile 

strength 
ftex,d design value of the textile reinforcement tensile strength 
ftex,m mean value of the textile reinforcement tensile strength 
g() performance function 
h height of a beam cross section 
nr number of textile rovings in a cross section 
qcalc the calculated global resistance of a statically 

indeterminate structure in terms of load factor 
qcr,hog external load level when the hogging region of a beam 

cracks 
qcr,sag external load level when the sagging region of a beam 

cracks 
qE external action 
qexp experimental global resistance of a statically indeterminate 

structure in terms of load factor 
qR,hog external load level when the hogging region of a beam 

reaches the ultimate resistance 
qR,sag external load level when the sagging region of a beam 

reaches the ultimate resistance 
qR,I external load level when beam BI reaches its load carrying 

capacity 
qR,II external load level when beam BII reaches its load carrying 

capacity 
xN position of the neutral axis of a cross section 

Greek upper case letters 
Δd reduction factor for the flexural depth 
ϕ() cumulative distribution function of standardized Normal 

distribution 

Greek lower case letters 
αd FORM sensitivity factor of the flexural depth random 

variable 
αE FORM sensitivity factor for action effects 
αftex FORM sensitivity factor of the textile reinforcement 

strength random variable 
αθ FORM sensitivity factor of the model uncertainty of local 

resistance random variable 
αR FORM sensitivity factor for the resistance 
βachieved achieved reliability index 
βachieved, I achieved reliability index for safety format proposal I 
βachieved, II achieved reliability index for safety format proposal II 
βtgt the target reliability index 
βtgt,50 the target reliability index for a reference period of 50 

years 
γC partial factor for concrete compressive strength 
γF partial factors applied to action variables 
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usually required to develop the full structural strength of the system. 
Other aspects that are critical for the application of TRC in practice are 
the potential sensitivity of thin elements to construction tolerances and 
its reduced resistance in case of fire [4–6]. 

Currently, several analytical and numerical models are available to 
describe the response of TRC members with respect to its sectional 
behaviour. An extensive review of the state-of-the-art can be consulted 
elsewhere (see for instance [7,8]). These approaches refer normally to 
mean material properties and allow determining the average resistance 
of TRC structural elements (or with a bias factor which should be close to 
1.0). However, their application in practice requires accounting for the 
inevitable uncertainties inherent to structural design. As a consequence, 
a suitable safety format needs to be implemented, ensuring that the 
probability of failure does not exceed an acceptable threshold. In the 

case of the resistance formulae, such format shall account for the vari
ability of the material properties as well as uncertainties related to the 
calculation model and to construction tolerances. 

For the reliability verification of structures, the so-called Partial 
Safety Factor Format (PSFF) is adopted in many design codes (Eurocodes 
[9,10] and fib Model Code [11] for example). In the PSFF, design values 
of the basic variables are defined through partial safety factors and limit 
state verifications are made with the design values of basic variables [9]. 
Partial factors for different materials and actions need to be calibrated so 
that the reliability levels for representative structures in design are as 
close as possible to the target reliability level. With respect to the 
adoption of a suitable safety format for TRC design, several efforts have 
been performed in the past [12–17] to address the principles of struc
tural reliability and design procedures. 

γM partial factors applied to material strength variables 
γSd partial factors for action effect model uncertainty 
γtex,I partial factor for textile reinforcement strength in safety 

format Proposal I 
γtex,II partial factor for textile reinforcement strength in safety 

format Proposal II 
δ mid-span deflection of a structure 
δcal calculated mid-span deflection of a structure 
δexp experimental mid-span deflection of a structure 
εc strain of concrete 
εi strain of a single textile reinforcement roving 
η mean value of the conversion factors for material strength 

variables 
ηE efficiency factor for the textile modulus of elasticity 
ηf efficiency factor for the textile tensile strength 
ηis the in-situ strength efficient factor of concrete 

θE random variable for action effect model uncertainty 
θE,LAFC action effect model uncertainty variable for LAFC 
θE,LAFC,num action effect model uncertainty variable for LAFC 

evaluated with numerical method 
θE,LAUC action effect model uncertainty variable for LAUC 
θE,LAUC,num action effect model uncertainty variable for LAUC 

evaluated with numerical method 
θE,NLA action effect model uncertainty variable for NLA 
θglobal random variable for the global resistance model 

uncertainty 
θR,local random variable for the local resistance model uncertainty 
ρ flexural reinforcement ratio of a cross section 
ρave average flexural reinforcement ratio of a cross section 
σc stress of concrete 
σi stress of a single textile reinforcement roving 
χ curvature of a cross section  

Fig. 1. Relation between individual partial factors (adapted from EN1990:2002 [9], refer to Nomenclature section for details).  
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The relationship between individual partial factors in PSFF of 
Eurocodes is shown in Fig. 1 (adapted from Figure C3 in EN1990:2002 
[9] accounting for the new definitions in the draft of the second gen
eration of prEN1990:2020 [18]). It should be noted that in addition to 
the basic uncertainties listed in Fig. 1, the partial safety factors should 
also account for approximations and uncertainties in the safety format 
calibration. Also, it has to be noted that this figure describes the classical 

verification method for structures, where the analysis (calculation of 
internal forces) is conducted separately from the calculation of the 
associated resistances. Within this frame, the verification is conducted at 
a given cross section by comparison of sectional internal forces and 
related resistances. Such procedure will be referred in the following as a 
local verification. As an alternative, the distribution of internal forces 
can be calculated considering the response and strength of the materials 

Fig. 2. Analysis of a statically indeterminate reinforced concrete structure designed according to the internal forces calculated assuming linear uncracked behaviour: 
(a) geometry and actions; (b) moment – curvature diagrams; and (c) moment – load diagrams. 
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(following a nonlinear analysis). This allows to determine directly the 
load-carrying capacity of the system and will be referred to in the 
following as a global verification method. In this case, the quantification 
of the model uncertainties [19] can be quite different and other safety 
formats [9,11] can be more appropriate. 

In Eurocodes [9], the partial factors of actions γF and the partial 
factors of material strength variables γM are typically calibrated sepa
rately by using constant standardised First Order Reliability Method 
(FORM) sensitivity factors [9,20,21]. Taking advantage of this frame, in 
order to define a safety format for TRC structures, only the partial factors 
related to the resistance (materials) need to be recalibrated, while the 
partial factors for action variables from Eurocodes [9] can theoretically 
be maintained. 

It is interesting to note in Fig. 1 that the model uncertainty of action 
effects is accounted for in the partial factor for action variables, γF. Such 
assumption, provided that a constant value of γF is adopted, ignores 
differences related to material response (brittle/ductile response) and 
analysis method (linear-elastic response/consideration of re
distributions). This simplification can lead to unsatisfactory levels of 
reliability for statically indeterminate brittle structures (as those built 
with TRC). 

In this paper, the action effect model uncertainty of TRC structures 
will be investigated on the basis of a statistical evaluation of the results 
of an experimental programme designed for this purpose. This investi
gation will focus not only on statically determinate elements, but also on 
the response of statically indeterminate structures failing in a brittle 
manner. The safety format and partial factor related to the resistance 
(γM) for TRC structures will then be calibrated based on a proper 
probabilistic modelling of the basic variables. A suitable model to ac
count for action effects on TRC structures and the corresponding model 
uncertainty will be presented. On its basis, tailored values of the partial 
safety factors for TRC will be derived as well as a suitable design 
approach for calculation of internal forces. 

2. Action effect model uncertainty in statically indeterminate 
structures 

In this section, the different influences of brittle and ductile re
sponses on statically indeterminate structures are examined with respect 
to their mechanical consequences and the associated reliability 
considerations. 

2.1. Influence of sectional behaviour on the structural response 

To illustrate the different model uncertainty of action effects of 
structures with different sectional response (brittle/ductile), the load- 
bearing behaviour of statically indeterminate structures with different 
materials is first investigated. As a representative example, two beams 
with identical geometry and loading conditions (see Fig. 2a) but whose 
material response is different are examined:  

- Beam BI refers to the classical response of concrete reinforced with 
ordinary steel rebars. Its moment–curvature diagram can be 
approximated by a quadrilinear law showing a plastic plateau with 
large deformation capacity related to extensive yielding of the lon
gitudinal reinforcement and significant ultimate strain of the rein
forcement steel (see Fig. 2b). This response can be considered as 
ductile and thus insensitive to imposed deformations (allowing to 
calculate the structural capacity according to limit analysis [22]).  

- Beam BII refers to a structure reinforced with a brittle reinforcement, 
as for TRC, whose failure occurs prior to any plastic plateau or to an 
over-reinforced structure with conventional steel reinforcement 
where the compression zone crushes before the reinforcement yields. 
The capacity to redistribute internal forces is limited to the change of 
stiffness related to the cracked response and the structure can 

potentially be sensitive to imposed deformations (limit analysis not 
applicable to calculate its structural capacity). 

In a classical design of a reinforced concrete structure, the internal 
forces are calculated assuming linear uncracked behaviour (not 
considering cracking nor yielding). This allows neglecting the influence 
of the reinforcement on the stiffness, so that no iteration is required in 
designing a new structure. In this case, the sections of the beam 
described above would be designed so to resist for the external action 
(qE) both the maximum sagging moment according to a linear response 
(MR,sag = 9/16 ⋅ qEL2/8) and the maximum hogging moment (MR,hog = - 
qEL2/8), requiring thus different amount of reinforcement at these sec
tions, see Fig. 2b. In reality, when the load is applied, different phases of 
response can be observed as shown in Fig. 2c for the two characteristic 
sections (hogging and sagging region). Before cracking occurs, the dis
tribution of bending moments follows that of the elastic uncracked 
behaviour, with proportional increments to the load at both control 
sections (maximum sagging moment equal to 9/16 ⋅ qL2/8 and a 
maximum hogging moment equal to - qL2/8). Cracking occurs first in the 
hogging region (qcr,hog in Fig. 2c), leading to a local loss of stiffness. As a 
consequence, bending moments increase more than proportionally in 
the sagging region and less than proportionally in the hogging region. 

For a higher level of load, cracking at the sagging region also occurs 
(qcr,sag) and the internal forces redistribute thereafter according to the 
relative stiffness of the hogging and sagging regions. Since the rein
forcement in the hogging region is higher due to the design procedure 
(Fig. 2b), its stiffness is also higher and moments increase more than 
proportionally in the hogging region (Fig. 2c). Depending on the 
strength, the hogging or sagging region can first attain their strength. In 
Fig. 2c, this case corresponds to the hogging region. Consequently, for 
beam BII, a brittle failure occurs over the intermediate support, while 
the sagging region would still have a capacity to increase the acting 
moment, giving rise to a load carrying capacity lower than the action 
assumed for design (qR,II ≤ qE). On the contrary, for beam BI, the 
response of the governing section is ductile, and this allows for further 
redistributions of internal forces, until both regions attain their resis
tance and the full structural capacity is reached [23] (qR,I = qE), see 
Fig. 2c. 

It is interesting to note thus that when brittle responses can be ex
pected, evaluations of the internal forces deviating from the actual one 
can lead to unsafe designs. The consequences of this fact in terms of 
reliability are however not explicitly accounted for in the current 
Eurocodes safety format, as the safety element for the model uncertainty 
of action effects are only accounted for in the partial factors on actions 
(γF), which is independent of the response of the structure and type of 
action effect analysis model. On the other side, in structures with ductile 
behaviour, the load carrying capacity corresponds exactly to the load 
assumed for design, despite the fact that the actual behaviour deviates 
significantly from the simplified behaviour assumed for the analysis 
(typically linear elastic behaviour). It can be concluded that for struc
tures with ductile response, the model uncertainty of action effects is 
relatively small, whereas for brittle response, the model uncertainty of 
action effects shall be consistently accounted for in accordance with the 
type of analysis performed. This will be discussed in the following 
section. 

2.2. Model uncertainty of action effects in structural concrete 

The need for considering the uncertainties in calculating the internal 
forces in a structure, in addition to the uncertainties related to the ac
tions, has been acknowledged already in the first attempts to quantify 
the partial safety factors. According to the first discussions within CEB in 
view of the preparation of the first Model Code [24], the partial safety 
factor for actions was assumed to account for the uncertainties related to 
calculation of the internal forces in case of refined analyses. However, 
for the case of typical structural analysis or in presence of particular 
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uncertainties, an additional partial factor γSd = 1.12 (1.4/1.25) 
increasing the value of the actions was defined [25]. This additional 
factor was intended to account for the uncertainties in modelling the 
structure, for potential errors and for neglected effects [24]. 

A more detailed description of the uncertainties considered with this 
additional partial safety factor, including an estimate of the coefficients 
of variation of the ratio between actual and calculated internal forces 
Eexp/Ecalc , has been proposed in the CEB Manuals “Structural Safety” 
[26–28]. The considered uncertainties (coefficients of variation in 
brackets) were: 

(i) effect of differences between the actual structure and the ideal
ized system assumed in the analysis (see uncertainty AE1 in 
Figs. 1, 8% for concrete structures and 5% for steel structures);  

(ii) approximations in the analysis (5%);  
(iii) influence of imperfections during execution on the internal forces 

(see uncertainty AE3 in Fig. 1; 5% for concrete structures and 2% 
for steel structures);  

(iv) the effect of neglected actions at ultimate limit state (as for 
instance imposed deformations, including thermal effects and 
shrinkage);  

(v) the inaccuracy in determining the influence of load combinations 
with the chosen safety format of partial safety factors (for the 
uncertainties (iv) and (v), a coefficient of variation of 8% for 
concrete structures and of 5% for steel structures, respectively). 

In addition, also the uncertainty related to the assumed probability 
functions of the actions has been considered (with a value of the coef
ficient of variation between 0 and 5% depending on the coefficient of 
variation of the action). It has to be noted, that in the safety format of 
Fig. 1, this effect should be accounted for in the partial safety factor of 
the actions (see also change in the latest draft of prEN 1990:2020 [18]) 
so that it is not considered in the following. 

The coefficient of variation of the ratio between actual and calcu
lated action effect (Eexp/Ecalc) can be obtained from the square root of the 
sum of the squares. For concrete structures, the total coefficient of 
variation becomes VSd = 0.125 (0.082 + 0.022 + 0.052 + 0.082) whereas 
for steel structures, VSd = 0.076 (0.052 + 0.022 + 0.022 + 0.052). In [28], 
the partial safety factor γSd has been calculated based on reliability 
analysis assuming a probability of failure and a coefficient of variation 
for the actions. The obtained values were approximately 1.125 for 
concrete and 1.075 for steel structures, respectively. Similar values 
could be obtained following the approach of [9] by assuming lognormal 
distributions, a target reliability index βtgt,50 = 3.8 and a sensitivity 
factor for non-dominating actions (α = 0.4) leading to γSd = exp 
(0.4⋅0.70⋅3.8⋅0.125) = 1.14. 

According to the knowledge of the authors, this is the most detailed 
description of the uncertainties covered by the partial factor γSd still 
available in the literature and the result has been acknowledged in 
different codes (current Eurocode “Basis of structural design [9] for 
instance, defines values of γSd between 1.05 and 1.15, see Table A1.2(B), 
note 4). Nevertheless, it has to be noted that the considerations 
described above reflect the state of knowledge and the engineering 
practice at that time (1960s and 1970s). They were highly influenced by 
the concern to calculate the “actual” internal forces as accurate as 
possible with the tools of that time (typically hand calculations or 
rudimentary computer programs), but surprisingly, the difference be
tween statically determinate or indeterminate structures hasn’t been 
considered explicitly. In addition, as shown above, for statically inde
terminate structures, a significant uncertainty can arise from the dif
ference between the mechanical behaviour assumed for the structural 
analysis (typically linear elastic uncracked) and the behaviour assumed 
for calculating the sectional resistance (typically cracked concrete with 
nonlinear behaviour for concrete and steel). 

2.3. Definition of the random variable for model uncertainties 

From the case study described above, it has been observed that the 
model uncertainty of action effects (local value of an internal force at a 
given cross section) will eventually influence the model uncertainty of 
the load-carrying capacity of a statically indeterminate structure. As 
shown in the example above, in the classical design approach of struc
tural concrete, the models used to determine action effects and resis
tance are not necessarily the same. The analysis of action effect is 
typically determined assuming a linear response and neglecting the in
fluence of cracking (constant uncracked stiffness) whereas, for calcula
tion of the resistance, cracking and the nonlinear response of both 
concrete and steel reinforcement are considered. As previously dis
cussed, this does not have consequences at ultimate for ductile re
sponses, but can have implications for brittle redundant systems. 

With respect to the quantification of the local resistance model un
certainty, a random variable can be defined by comparing the experi
mentally measured local resistance with the theoretical resistance. It 
shall be noted that the experimental local resistance data is usually 
obtained by experimental programmes on statically determinate struc
tures, so that uncertainties related to the calculation of internal forces 
are not relevant. The local resistance model uncertainty is thus analysed 
through the following ratio: 

θR,local =
Rexp

Rcalc
(1)  

where θR,local is the random variable for the local resistance model un
certainty, Rexp is the experimental local resistance and Rcalc is the 
calculated resistance. 

For the action effect model uncertainty, the random variable θE is 
defined in analogy with θR,local as: 

θE =
Eexp

Ecalc
(2)  

where θE is the random variable for action effect model uncertainty, Eexp 
is the experimental action effect and Ecalc is the calculated action effect. 
The definition of θE in Eq. (2) has however some inconsistencies because 
Eexp and Ecalc refer to the local level while the load-carrying capacity of a 
structural system (potentially redundant) is governed by its global 
response. Due to this reason, it is not appropriate in general to directly 
use the variable Eexp /Ecalc for a given cross section to quantify the action 
effect model uncertainty. Instead, the global resistance model uncer
tainty variable of a statically indeterminate structure can be defined as: 

θglobal =
qexp

qcalc
(3)  

where θglobal refers to the random variable for the global model uncer
tainty, qexp to the experimentally measured load-carrying capacity of a 
statically indeterminate structure in terms of load factor at ultimate load 
bearing capacity and qcalc to the calculated load-carrying capacity. As 
shown in the previous case study, the global model uncertainty contains 
the model uncertainty of action effects and the model uncertainty of 
local resistance. The model uncertainty of action effects can then be 
quantified by removing the model uncertainty of local resistance from 
that of global resistance. 

3. Experimental programme 

To investigate the flexural response of TRC structures and to provide 
basic test data for investigating the action effect model uncertainty of 
TRC in statically indeterminate structures, an experimental programme 
was performed. The test series consisted of nine thin slab strips tested 
under three-point bending load condition. The tests were performed at 
the Structural Concrete Laboratory of Ecole Polytechnique Fédérale de 
Lausanne (Switzerland) and were performed in seven consecutive days 
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at an average age of 301 days (to ensure constant mechanical 
properties). 

3.1. Mechanical properties of the materials 

The mortar mix described in [29] was used for the experimental 
programme, composed of nearly 40 % binder and nearly 60 % aggregate 
(maximum aggregate size 1.6 mm). All specimens were cast on the same 
day following an identical procedure and preparation of the mix. 

Compressive tests on the mortar produced in three batches were carried 
out on 70 × 140 mm cylinders tested at the same period than the beam 
specimens. The mean value of the strength fc of 14 compressive tests is 
given in Table 1. As for the elastic modulus and tensile strength of the 
mortar, values were derived on the basis of fc value according to the data 
of [29] (results are provided in Table 1). 

The textile fabrics were carbon fibre (CF) meshes. Two types of 
fabrics were used (named CF01 and CF02 in the following), both coated 
with epoxy and with a layer of quartz-sand applied to the surface, but 
with different net cross section area of roving (details on the geometry 
and main properties can be consulted in [29]). The mechanical prop
erties of the textile fabric are given in Table 2. Bare textile (single rov
ings extracted from the fabric grid) were also tested in tension. 
Consistent with what has been observed by Valeri et al.[29], it was first 
observed a straightening phase of the rovings, followed by a linear 
response characterized by the tangent modulus of elasticity of the fila
ment (Etex,m) until its tensile strength (ftex,m). 

3.2. Specimens and experimental results 

The specimens had a rectangular cross section (250 mm-width and 
60 mm-height) with varying span L (refer to Fig. 3 and to Table 3). All 
specimens were cast following the same procedure and dimensions. As 
the tested span length was different (Table 3), variable overhang lengths 
resulted (Lo1 and Lo2 in Fig. 3). These overhangs varied between 0.3 m 
and 1.2 m. Since the self-weight of the beams is relatively small 
compared to the failure load, the influence of the overhang length in the 
overall response can be considered as negligible. 

The specimens were reinforced with the textiles CF01 or CF02, that 
were intentionally not kept with a constant cover, but only attached at 

Table 1 
Mechanical properties of the mortar (mean values and coefficients of variation 
CoV).    

Value CoV 

Elastic Modulus of mortar Ecm [GPa]  31.0 2.58 %1) 

Mortar tensile strength fctm [MPa]  4.4 9.43% 1) 

Mortar compressive strength fcm [MPa]  128.5 10%  

1) Values according to [29]. 

Table 2 
Mechanical property of textile reinforcement in longitudinal direction (number 
of tests, CoV in brackets).  

Fabric  CF01 CF02(#, CoV) 

Net cross section atex [mm2] 0.85 1.70 
Nominal perimeter Utex [mm] 7 11 
Grid spacing etex [mm] 20.0 17.0 
Strength 1) ftex,m [MPa] 1833 1833 (5, 7.41%) 
Elastic modulus 1) Etex,m [GPa] 228 228 (5, 10.9%)  

1) calculated on the basis of the nominal value of the net cross section 

Fig. 3. Specimens: (a) test setup; and (b) representative cross section of the tested specimens (units: [mm]).  
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its ends. This allowed the textile to vary its position during casting, in 
order to investigate the influence of construction tolerances and casting 
procedure in the structural response. After the bending tests were con
ducted, saw-cuts were performed on the specimens near the cross sec
tion failing in bending (representative cross section) and the exact 
position of the rovings are measured. The illustration of the measured 
roving positions in each cross-section is given in Fig. 3b. Since the 
effective depth was not constant over the beam width, the average 
flexural depth dave and the average flexural reinforcement ratios ρave are 
defined as follows: 

dave =

∑nr
1 di

nr
andρave =

nratex

bdave
(4)  

where nr refers to the number of rovings in a cross section, di to the 
flexural depth of each roving, atex to the net cross section of a single 
roving and b to the cross section width. Details are given in Table 3. 

Digital Image Correlation (DIC) was performed at the sides of the 
specimens and used to track their displacement fields following the same 
methodology as described in [29]. The result of DIC were checked with 
continuous readings obtained by means of a Linear Variable Displace
ment Transformers (LVDT) attached to the top side of the mid-span of 
each specimen. The load–deflection (F-δ) relationships recorded for the 
tests are shown in Fig. 4 (δ based on DIC measurements). For low levels 
of load, a linear response is observed until the cracking moment is 
reached. Once cracking develops, the response becomes softer, with a 
stiffness depending on the reinforcement ratio and slenderness. Failure 
occurred in all specimens in bending in a brittle manner due to rupture 
of reinforcement. 

4. Bending test analysis 

The flexural response of TRC can be modelled by considering a linear 
response of both concrete and textile reinforcement and assuming that 
plane sections remain plane after deformation (Bernoulli-Navier hy
pothesis), see Fig. 5a. This assumption has been extensively investigated 
and validated in previous investigations [30–36]. 

Due to the significant variation of the roving flexural depth in some 
cross sections, each roving is modelled separately for calculation of the 
response. Failure occurs in all cases when the outermost roving reaches 
its tensile strength, as it fails in a brittle manner and the rest of rovings 
are not capable of withstanding their increase of force. With respect to 
the properties of the rovings within the concrete section, their strength 
and stiffness have to be reduced with respect to bare textile properties 
(in order to account for the delayed activation of stresses and local 
damage [29,37–39]). This will be performed in the following by means 
of two distinct efficiency factors [40,41]. The first, named ηf, reduces the 
effective textile tensile strength with respect to the bare textile. The 
second, named ηE, reduces the effective modulus of elasticity of the 
textile. 

The value of the efficiency factors is determined in this work by 
means of calibration with test results, in order to have an average of 
measured-to-calculated values equal to 1.0 both in terms of strength and 
deformation at failure. This yields the value ηf = 0.91 and ηE = 0.79. 
Such approach is adopted as the aim of this paper is the statistical 
analysis of the TRC response (alternative approaches based on physical 
models to determine such efficiency factors can be consulted elsewhere 
[29,41]). It can be noted that the calibrated value of ηE is lower in this 
case than the value of ηf , which is uncommon in comparison to the 
results from other researchers [29,41]. This fact can be partly grounded 
on the fact that the roving position was variable through the length of 
the specimens and thus the geometry (stiffness and resistance) of the 
governing cross section in bending is not necessarily constant through 
the length of the specimen. Also, the influence of the duration of the 
structural tests, different to that of the material characterization tests, is 
accounted for in these coefficients which can be relevant for the concrete 
stiffness. 

The calculated load–deflection curves (F-δ) are plotted in Fig. 5c 
together with the measured results. The comparison between the tested 
ultimate resistance Rexp, the calculated one Rcalc and the corresponding 
maximum deformation of each beam is givens in Table 4. The compar
ison shows that the CoV of the resistance (5.13%) is relatively low 
(lower than those reported by other authors [12]). 

5. Response of statically indeterminate systems of TRC and 
model uncertainty of action effects 

As previously explained, the response of statically indeterminate 
systems and the corresponding action effect model uncertainties can be 
significant for the safety format calibration, particularly when a brittle 
response can be expected. This is for instance the case for TRC, whose 
response was experimentally examined in the previous Section with 

Table 3 
Main parameters of the bending specimen and measured flexural resistance at maximum load.  

Name L [m] Textile type Number of rovings nr atex [mm2] dmin 

[mm] 
dmax 

[mm] 
dave 

[mm] 
ρave[%]  a/dave Mexp 

[kNm] 

TB1 1.2 CF02 22  1.7  42.3  50.9  46.4  0.32  12.9  2.36 
TB2 1.15 CF02 22  1.7  46.4  53.8  49.9  0.30  11.0  3.33 
TB3 1.1 CF02 22  1.7  49.0  55.0  51.4  0.29  11.0  3.64 
TB4 2.1 CF02 22  1.7  44.5  54.7  50.0  0.31  21.5  2.77 
TB5 2.2 CF02 21  1.7  44.6  52.2  47.9  0.30  23.0  2.23 
TB6 2.4 CF02 22  1.7  49.8  54.8  52.2  0.29  22.0  3.04 
TB7 2.4 CF02 21  1.7  38.0  49.0  45.3  0.27  25.0  1.99 
TB8 2 CF02 30  1.7  48.3  54.9  51.5  0.40  19.4  3.58 
TB9 0.63 CF01 39  0.85  29.9  46.3  38.3  0.35  8.2  1.63  

Fig. 4. Measured load–deflection responses of tested specimens.  
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reference to statically determinate structures. In order to investigate the 
response of statically indeterminate TRC structures, it will be presented 
in this Section a large database obtained by assembling the test results 
on determinate members. This database will eventually be used to create 
a probabilistic model of the action effect model uncertainty. 

The main idea to simulate the response of statically indeterminate 
members based on the response of statically determinate ones is shown 
in Fig. 6a (details for a worked example are provided in annex B). As it 
can be seen, a redundant system is generated by assembling two simply 

supported beams connected at mid span. Such statically indeterminate 
system will be referred to in the following as an assembled cross-beam 
system. Due to the symmetry conditions of the system, each compo
nent beam has the same load–deflection response as in a three-point 
bending test and the response of the complete system can be obtained 
by the superposition of the load–deflection relationship of the two 
component beams, see Fig. 6b. 

5.1. Action effect model uncertainty for different types of structural 
analyses 

In the following, the experimental results on the assembled cross- 
beam systems are compared to three types of structural analyses:  

• Linear Analysis assuming UnCracked stiffness (LAUC in Fig. 6b and 
c).  

• Linear Analysis assuming Fully-Cracked stiffness (LAFC in Fig. 6b 
and c).  

• NonLinear Analysis assuming uncracked and cracked behaviour. 
This analysis is conducted assuming a trilinear moment–curvature 
relationship and the actual extent of cracked and uncracked regions 
(NLA in Fig. 6b and c). 

In order to quantify the model uncertainty of action effects, the local 

Fig. 5. (a) Model assumptions for flexural response; (b) material constitutive law of concrete and textile reinforcement and (c) calculated and experimental 
load–deflection curves. 

Table 4 
Three-point bending test results.  

Specimen Rexp 

[kN] 
Rcalc 

[kN] 
Rexp/ 
Rcalc 

δ exp 

[mm] 
δ calc 

[mm] 
δ exp/δ 
calc 

TB1  8.4  8.5  0.99 26.4  26.5  1.00 
TB2  13.2  12.2  1.08 26.3  21.9  1.20 
TB3  16.5  16.0  1.03 28.8  25.6  1.13 
TB4  5.8  5.8  1.00 76.3  77.6  0.98 
TB5  4.3  4.6  0.93 80.6  87.0  0.93 
TB6  5.6  5.1  1.10 116  88.4  1.31 
TB7  3.4  3.5  0.97 106.4  113.3  0.94 
TB8  7.4  7.7  0.96 7.4  7.7  0.96 
TB9  11.7  11.3  1.04 5.7  8.0  0.71 
Average    1.0    1.0 
COV    5.13%    17.10%  
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resistance model uncertainty will be removed from the global model 
uncertainty. To do so, tailored values of the efficiency factor ηf are 
calibrated for each individual beam, in order to match the experimental 
resistance, see Table 5. The action effect model uncertainty for each 
analysis method can then be defined as: 

θE,LAUC =
Qexp

QLAUC
(5)  

θE,LAFC =
Qexp

QLAFC
(6)  

θE,NLA =
Qexp

QNLA
(7)  

where Qexp refers to the experimental resistance of an assembled cross- 
beam system by superimposing the experimental response of its two 
component beams. The terms QLAUC, QLAFC and QNLA refer to the global 
resistances (load-carrying capacities) of the assembled cross-beam 

system calculated with LAUC, LAFC and NLA methods respectively and 
θE,LAUC, θE,LAFC and θE,NLA refer to the corresponding action effect model 
uncertainty variables for the three types of analysis. 

5.2. Data of action effect model uncertainty for different types of 
structural analyses 

By combining the nine bending tests of basic beams presented in 
Section 3, a total of 36 assembled cross-beam systems can be generated. 
The resulting action effect model uncertainty data is plotted in Fig. 8a. 
The assembled experimental load–deflection curves of six representative 
cases and the corresponding load-deformation curves with LAUC, LAFC 
and NLA are shown in Fig. 7. A summary of the results of all the 
assembled cross-beam tests is also provided in Table 6 and plotted in 
Fig. 8a. As it can be noted, both NLA and LAFC give very close prediction 
to the actual resistance, while LAUC has a relatively larger scatter, 
suggesting that the simplifications made about the uncracked stiffness of 
the structure components result in a higher model uncertainty for 

Fig. 6. (a) Assembled cross-beam system test set-up; (b) load–deflection relationship of the cross-beam system obtained by superposition of both responses of its 
component beams and (c) considered moment–curvature (M-χ) relationships for different structural analysis models. 

Table 5 
Tailored efficiency factor ηf for the basic beams.  

Specimen TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 

ηf  0.90  0.98  0.94  0.91  0.85  1.00  0.88  0.87  0.95  
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statically indeterminate structures. In addition, NLA allows reproducing 
the different stages of response (uncracked or partially cracked) in a 
realistic manner. 

To further increase the size of sample for action effect model un
certainty data, the number of components of a cross-beam system can 
still be increased in order to generate more combinations. Following the 

same methodology, assembled cross-beam system composed of three to 
five components are further investigated. In total, 372 different cross- 
beam systems are generated and the resulting action effect model un
certainty data is plotted in Fig. 8b. A summary of the statistics of the 
assemble cross-beam tests is provided in Table 6. It can be observed that, 
with the enlarged database, the difference between the model 

Fig. 7. Representative assembled cross-beam system cases.  

Fig. 8. Quantile-Quantile plot for action effect model uncertainty sample data of (a) cross-beam of two components; (b) cross-beam of two to five components; and 
(c) detail of tail region for cross-beam of two components. 
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uncertainty data of the NLA, LAUC and the LAFC method is more pro
nounced, which confirms that the NLA and LAFC result in lower level of 
action effect model uncertainty than the LAUC. 

As shown in Fig. 1, the action effect model uncertainty of statically 
indeterminate system results from multiple sources as: the uncertainties 
related to the structural modelling of action effects; the uncertainties in 
material properties influencing action effects; and the uncertainties in 
geometrical properties influencing action effects. The result shows that 
NLA yields to the lowest CoV level, which signifies that NLA can 
significantly reduce the uncertainties related to the structural modelling 
of action effect. Comparing the tail region of NLA, LAUC and LAFC from 
the Quantile-Quantile plot [42] (vertical axis referring to quantiles in a 
standard normal distribution) of θE,NLA, θE,LAFC and θE,LAUC data (see 
Fig. 8a) it seems however that in the tail region there is no significant 
difference between these three distributions. This is explained by the 
fact that the tail region is composed only of results concerning two 
beams (specimens 6 and 9) influencing the response of all methods to 
evaluate the internal forces, see Fig. 8c. 

6. Limits of applicability of linear analyses assuming uncracked 
and fully-cracked behaviour 

The analyses on statically indeterminate structures based on the 
assembled cross-beams are based on the three-point bending tests data 
tested within this research program. This implies that only a limited 
range of the basic design variables has been explored. In this Section, the 
applicability of LAUC and LAFC will be investigated for a wider range of 
design cases. 

To that aim, the same methodology of the assembled cross-beam 
system is used in this section. The basic data for the three-point 
bending test is in this case estimated on the basis of a non-linear anal
ysis (tri-linear moment–curvature relationship). This approach was 
previously observed to lead to the most realistic results, and to repro
duce the various regimes of response (see Fig. 7). A series of numerical 
assembled cross-beam system case studies are generated by varying the 
span L, the cross-section height h, and the textile reinforcement cross- 
section area Atex of the component beams. By comparing the structural 
analysis result (global resistance of the structures) from the LAUC and 
the LAFC with that of NLA, the limit of applicability of LAUC and LAFC is 
further examined. 

6.1. Range of design parameters of numerical case study 

In the numerical cases, assembled cross-beam systems with two 
component beams with rectangular cross-sections (refer to Fig. 6) are 
studied. In order to investigate the influence of the variation of relative 
stiffness between the component beams, the dimensions of the first 
component beam in the assemble cross-beam system is kept constant 
and the dimensions of the second beam are varied in the selected range. 

For all the component beams of the assembled cross-beam systems, 
the cross-sectional width is kept constant (b = 250 mm). The material 
parameters are also kept constant, adopting the same material proper
ties as for Section 3. To simplify the simulation, all textile re
inforcements in a given beam are considered to be aligned at the same 
depth. Three independent parameters are used to characterize the beams 
in the numerical cases: the span L, the cross-section height h, and the 
textile reinforcement cross section area Atex. The vector composed of the 
three design parameters form the design vector Xnum for a given 
component beam: 

Xnum = [L, h,Atex] (8)  

For a given component beam, the other parameters are dependent on the 
values of its design vector Xnum: the cross-sectional effective depth of a 
given component beam (d) is assumed to be proportional to the height h 
with a constant ratio d = 0.85 h and the reinforcement ratio ρ is defined 
as ρ = Atex

bd . 
In each numerical case, two beams are assembled. The design vector 

of component beam A is always kept constant as Xnum,A =
[
LA, hA,Atex,A

]
, 

with LA = 1.7 m, hA = 60 mm and Atex = 66.3 mm2 (resulting in ρA =

0.52%). The design vector of component beam B (denoted by Xnum,B,ijk 

with i,j,k = 1–10) is varied. The design parameters of beam B are varied 
within the following range: LB,i = (1.0–4.0) m; hB,j = (30–120) mm and 
Atex,B,k = (23.8–142.8) mm2 , resulting in ρB,ijk = (0.09–2.24)% (i,j,k =
1–10). For each parameter, ten equally spaced values in the ranges 
specified are considered, leading to a total of 1000 cases. For example, 
for the case of [i, j, k]=[1,1,10], Xnum,B,ijk =

[
LB,1, hB,1,Atex,B,10

]
, with LB,1 

= 1.0 m, hB,1 = 30 mm and Atex,B,10 = 142.8 mm2 (resulting in ρB =

2.24%). 
For each case, the resistance of the assembled cross-beam system 

analysed with LAUC and LAFC (refer to Annex B for the detailed analysis 
method) are compared with that analysed with NLA in order to get the 
corresponding action effect model uncertainty data: 

θE,LAUC,num =
QNLA

QLAUC
(9)  

θE,LAFC,num =
QNLA

QLAFC
(10)  

It should be noted that θE,LAUC,num and θE,LAFC,num only contains un
certainties related to the structural modelling of action effects and are 
thus different than the definition of θE,LAUC and θE,LAFC in the previous 
section (Section 5.1 Eqs. (5)–(6)). 

Table 6 
Statistics of the cross-beam system tests with two components and two to five 
components.  

Number of 
components 

Number of 
assembled tests 

Load effect 
analysis 

Variable Average 
value 

CoV 

Two 36 LAUC θE,LAUC   1.05  8.51% 
36 LAFC θE,LAFC   1.02  4.01% 
36 NLA θNLA   1.01  3.35% 

Two to five 372 LAUC θE,LAUC   1.14  11.01% 
372 LAFC θE,LAFC   1.06  4.47% 
372 NLA θNLA   1.03  3.39%  
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Fig. 9. Histogram of the θE,LAUC,num and θE,LAFC,num data from the numerical 
assembled cross-beam system case study. 

Table 7 
Statistics of the numerical cross-beam system tests with two components.  

Number of fictitious 
tests 

Load effect 
analysis 

Variable Average 
value 

COV 

1000 LAUC θE,LAUC,num   1.06  11.21% 
1000 LAFC θE,LAFC,num   1.00  1.66%  
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6.2. Results of the case study 

The histograms of the resulting θE,LAUC,num and θE,LAFC,num data for all 
cases are plotted in Fig. 9 and the statistical values are given in Table 7. 
It can be observed that, in general, the LAFC results in smaller scatter in 
the action effect model uncertainty. 

To have a better understanding of the limit of applicability of the two 
methods, the resulting θE,LAUC,num and θE,LAFC,num for the cases with hB =

80 mm are plotted in Fig. 10. As it can be seen in this figure, θE,LAUC,num 
has significantly higher variation than θE,LAFC,num. For the cases when the 
reinforcement ratio of both beams is similar, the LAUC method yields a 
θE,LAUC,num value close to 1, but in a wide range of cases the value of θE, 

LAUC,num deviates significantly from 1. On the other hand, the LAFC 
yields in most cases θE,LAFC,num values close to 1. This confirms the 
applicability of the LAFC method in general. The result of the LAFC only 
deviates significantly from the expected value when the reinforcement 
ratio of Beam B is close to the minimum reinforcement ratio for bending. 
This means that a significant portion of the beam remains uncracked at 
failure and thus, the fully cracked assumption deviates from the actual 
response. For practical purposes, this situation can be avoided by 
requiring a reinforcement ratio higher than the minimum. It is also 
interesting to notice that in the cases where the two component beams 
have the same reinforcement ratio (ρB = ρA = 0.52%), despite the 
variation of other parameters, the result θE,LAUC,num and θE,LAFC,num 
values remain close to 1. This is because the ratio between the uncracked 
stiffness of the two beams are the same as the ratio between their fully 
cracked stiffness in these cases. 

As a conclusion from the previous considerations, it can be observed 
that, unlike for ordinary reinforced concrete structures, it is not advised 
to use the LAUC method to perform action effect analysis for TRC 
structures. A LAFC can, on the other hand, be applied provided that 
sufficient amount of flexural reinforcement is provided. It should also be 
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Fig. 10. Results of θE,LAUC,num and θE,LAFC,num for cases with hB = 80 mm.  

Table 8 
Probabilistic modelling of basic random variables for safety format calibration of 
TRC.  

Uncertainty 
type 

Variable Distribution Mean 
Value 

CoV Standard 
deviation 

Material Textile 
reinforcement 
tensile strength ftex 

Lognormal  
[43] 

ftex,m 15%  
[29] 

– 

Concrete 
compressive 
strength fc 

Lognormal  
[43] 

ηisfcm 15.6%  
[18] 

– 

Geometrical Flexural depth d Normal [43] dnom – 3 [mm]  
[12] 

Model Resistance model 
uncertaintyθR,local 

Lognormal  
[43] 

1.0 10%  
[12] 

0.1  
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dnom [mm]
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Fig. 11. Estimated values as a function of nominal effective depth: (a) γtex,II ; and (b)Δd.  
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noted that the previous comments focus on the cases with bending 
failure governed by rupture of the textile reinforcement (covering also 
cases with low levels of axial compression forces). Other failure modes 
(such as failures for very high levels of compression forces or shear) 
remain outside of the scope of this paper (covered by other partial safety 
factors). 

7. Safety format of TRC structures 

In this section, the reliability verification framework of Eurocodes 
[9] is used to calibrate the safety format for TRC structures on the basis 
of probabilistic reliability theory. Similar to the case of reinforced con
crete structures, a number of uncertainties (associated to material, ge
ometry and modelling) shall be accounted for in the partial factor for 
TRC. In addition, due to the brittle behaviour of TRC structures, it is 
necessary to discuss if additional safety considerations are needed for 
the model uncertainty of action effects (a common situation with respect 
to design of other reinforced concrete elements failing in a brittle 
manner by punching or second-order effects). In the following, the 
probabilistic modelling of the basic uncertainties is discussed and two 
types of safety formats are proposed for TRC structures. The efficiency of 
the proposed safety formats for TRC structures is discussed based on the 
reliability analysis of representative cases. 

7.1. Basic uncertainties in the design of TRC structures 

7.1.1. Material uncertainties 
Two material strength basic variables are involved in the reliability 

analysis problem of TRC structures: the tensile strength of textile rein
forcement and the concrete compressive strength. The material strength 
variables are assumed to follow lognormal distribution according to the 
recommendations in [43]. For the concrete compressive strength, the 
distribution parameters provided in the second generation of Eurocode 
prEN1992-1-1:2020 [44] are used, where the coefficient of variation 
(CoV) is taken as 15.6%, which accounts for both the uncertainty in 
concrete cylinder strength and the uncertainty in the in-situ strength 
efficient factor ηis [44]. For the distribution parameters of the textile 
reinforcement tensile strength, the statistics of the data from [29] are 
used, where the CoV of the tensile strength of textile reinforcement is 
taken as 15% (which accounts for the uncertainty in the single roving 
tensile strength based on test results). These distribution parameters are 
consistent with data from other researchers [12]. The uncertainty in the 
efficiency factor ηf of textile reinforcement is not accounted for in the 
material uncertainty, but in the uncertainty of the resistance model 
(calibration factor). It should be emphasized that with respect to the 
statistical properties for the textile reinforcement tensile strength, they 
should be based on the data provided by the manufacturer or derived 

from specific tests (products can have highly variable properties). The 
probabilistic modelling of the material strength variables used in the 
safety format calibration in this paper is summarized in Table 8. 

7.1.2. Geometric uncertainties 
Since the case of bending is considered and the material strength of 

textile reinforcement is calculated on the basis of the nominal value of 
the roving area, the governing geometrical value is the effective 
geometrical depth (d). Its uncertainties are mainly related to how the 
reinforcement is fixed during casting, to the type of the member (with 
flanged or full cross section), to the casting and control procedure and to 
the type of reinforcement (stiff or soft). Statistical data of the flexural 
depth variable can be found in literature. According to [12], a mean 
value of − 0.2 mm and a standard deviation of 2.0 mm of the measured 
data is observed for the deviation (error) of the flexural depth from 
nominal values (d-dnom). This shows that it is possible to have relatively 
good quality control of the position of the textile reinforcement in TRC 
structures. For practical applications of TRC structures, the distribution 
parameters of the flexural depth random variable will be considered 
related to their quality control and allowable execution tolerance. Since 
the total thickness of TRC structures is in general much smaller than in 
ordinary concrete structures, the assumptions of execution tolerances of 
concrete structures are not considered applicable to TRC structures. 
Referring to the data from [12] and also taking the efficiency of the 
textile reinforcement into account, a tolerance of +/− 5 mm for the error 
of effective depth (d-dnom) will be assumed in the following. The error of 
effective depth (d-dnom) is assumed to follow a normal distribution, with 
a mean value of 0, and − 5 mm corresponds to the 5% fractile. Based on 
the normal distribution assumption, the standard deviation of d-dnom can 
then be calculated as 5/1.645 = 3.0 mm. Since dnom is a deterministic 
value, the flexural depth variable d has the same standard deviation (3 
mm) as d-dnom, see Table 8. It should be noted that, with a constant value 
of execution tolerance for the flexural depth, the CoV of the flexural 
depth variable decreases with the increasing thickness of the structure. 
The same phenomenon has also been noticed in reinforced concrete 
structures in the second generation of Eurocode prEN1992-1-1:2020 
[44]. 

7.1.3. Model uncertainties 
Two types of model uncertainties are considered for the partial factor 

calibration of TRC structures: (i) the resistance model uncertainty and 
(ii) the action effect model uncertainty. For the resistance model un
certainty variable, θR,local, the model used to analyse the tests presented 
in this paper showed a fairly low CoV (equal to 5.13%). Such low value 
results partly from the fact that a calibrated value of the efficiency factor 
ηf was adopted. When designing TRC structures, a general value of this 
efficiency factor shall be adopted (not calibrated based on tests), 
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Atex = bd

d

0

2

4
R tgt

achieved,I

achieved

20 30 40 50 60
dnom [mm]

15

achieved,II

)b()a(

0.1%-0.9 %M

[mm]

Fig. 12. (a) Geometry of the investigated cross section and (b) achieved reliability index of the invesitigated bending case with the two safety format proposals.  

Table 9 
Key design parameters for the representative cases.  

Variable ftex,m [MPa] fcm [MPa] b [mm] h [mm] dnom [mm] ρ 

Value 1800 150 250 18.75–75 0.8 h 0.1% − 0.9% 
Variable type Random variable Random variable Deterministic Deterministic Random variable Deterministic  
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potentially leading to a higher value of CoV of the model uncertainty 
variable. Based on the work of other researchers [12,13,16], a reason
able value for the CoV can be considered as 10%, that will also be used in 
the following, see Table 8. 

For the action effect model uncertainty, as previously explained in 
Fig. 1, it is theoretically accounted for in the partial factors for the ac
tions provided in Eurocodes. It shall yet be noted that the model un
certainty of action effects accounted for by these partial factors depend 
neither on the material response (brittle or ductile) nor on the structural 
analysis methods (LAUC, LAFC, NLA or others). For TRC structures, it 
has been shown in this paper that when using NLA or LAFC for a 
redundant structure, the model uncertainty of action effects is relatively 
low compared to the values reported in Section 2.2 and to other un
certainties reported in Table 8 (maximum CoV = 4.47% for the inves
tigated cases). This is however not the case for LAUC (maximum CoV =
11.01%). Based on this consideration, it is proposed that both NLA and 
LAFC methods can be used to calculate the action effect (internal forces) 
of TRC structures without the need to adjust the action effect model 
uncertainty level. LAUC cannot however be used, unless additional 
specific considerations were made on the safety factors. 

7.2. Safety format proposals 

Based on the characteristic of basic uncertainties involved in the 
resistance of TRC structures, two types of safety formats are proposed. 

7.2.1. Safety format I: Partial factor γtex,I for the tensile strength of textile 
reinforcement and consideration of nominal dimensions 

The first proposal for the safety format is based on the use of a partial 
factor for the strength of the textile and the use of nominal values for the 
geometric dimensions. This approach corresponds thus to current design 
practice for conventional reinforced concrete structures, but providing a 
tailored partial safety factor for the strength of the reinforcement. 

The calculation of the value of the partial safety factor can be per
formed assuming that the resistance function R can be approximated by 
a lognormal distribution (detailed information about such an estimation 
is provided in Annex A). Thus, the partial safety factor γtex,I for calcu
lation of the design value of the tensile strength of textile reinforcement 
(ftex,d = ftex,ck/γtex,I) can be calculated based on the approximated value 
of the CoV of the resistance, VR: 

γtex,I =
ftex,ck

ftex,d
= exp

(
αRβtgtVR − 1.645Vftex

)
(11)  

Where ftex,d refers to the design value of the textile tensile strength, ftex,ck 

to its characteristic (5% fractile) value, αR to the FORM sensitivity factor 
for the resistance (adopted equal to 0.8 [9]), βtgt to the target reliability 
index and βtgt = 3.8 for structures with medium consequence class and a 
reference period of 50 years at the ultimate limit state [9], VR to the CoV 
of the resistance variable and Vftex the CoV of the material (15% ac
cording to Table 8). With respect to VR, its value can be approximately 
estimated (detailed information about such an estimation is provided in 
Annex A) by considering the CoVs for the material, geometrical and 
model uncertainties (refer to Table 8) as: 

VR ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
θR
+ V2

ftex
+ V2

d

√

(12)  

The general format to calculate the design value of the resistance (Rd) 
can thus be established as: 

Rd = R{
ftex,ck

γtex.I
,
fck

γC
, dnom} (13)  

Where fck refers to the characteristic compressive strength of concrete, 
γC to its partial safety factor (1.5 according to Eurocode prEN1992-1- 
1:2020 [44]) and dnom to the nominal value of the geometrical 

dimensions. 
Detailed information about the safety format calibration method is 

provided in Annex A. As it can be noted, the estimated value of VR varies 
with the change of the nominal effective depth of the structure (see 
Table 8). For the investigated range of the nominal effective depth 
(15–60 mm), the estimated value of VR ranges between 0.19 and 0.27 
(see detailed results in Annex A). It should be noted that according to 
prEN1990:2020 [18], when VR is higher than 0.20, the approximated 
Eq. (11) is not applicable for the partial factor calibration anymore. In 
this section, however, Eq. (11) is still used to make a first approximated 
calculation of the partial safety factor. Its effectiveness will be verified 
by the reliability case study in Section 7.3. Considering the wide 
applicable range of the safety format, referring to the approximated 
estimation values of VR, a relatively conservative value of VR = 0.225 is 
selected in the following and the value of the partial factor γtex,I is then 
calculated as: 

γtex,I ≈ 1.55 (14)  

It should be noted that the partial factor for concrete compressive 
strength γC = 1.5 from Eurocode prEN1992-1-1:2020 [44] is also 
adopted in this research. The effectiveness of this proposal will be 
verified in Section 7.3 by calculating the actual achieved reliability level 
of representative cases. 

7.2.2. Safety format II: Partial factor γtex,II for the tensile strength of textile 
reinforcement and consideration of design values for the dimensions 

As shown in Annex A, for thin members, the geometrical un
certainties (related to the effective depth) can become governing. For 
this reason, it makes sense to separate the geometrical uncertainties 
from material and model uncertainties as previously discussed by 
[12,13]. Considering the general form of the limit state function and the 
probabilistic models of the basic uncertainties (see details in Annex A), 
the material and model uncertainties will be lumped into one partial 
factor γtex,II applied to the tensile strength of textile reinforcement. With 
respect to the geometrical uncertainties, they will however be consid
ered apart, by means of a design value of the effective depth (this 
alternative possibility using design values of geometrical dimensions is 
already given by prEN1992-1-1:2020 [44]). The partial safety factor can 
thus be estimated with the help of FORM sensitivity factors as: 

γtex,II =
ftex,ck

ftex,d
= exp

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
ftex + α2

θ

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
ftex + V2

θ

√

αRβtgt − 1.645Vftex

)
(15)  

Details on this derivation and the values for the various parameters are 
given in Annex A of this paper. With respect to the design value of the 
effective depth, it is calculated by reducing the nominal value by a 
distance of Δd: 

ddesign = dnom − Δd (16)  

whose value results (see Annex A for details): 

Δd = αdαRβtgtσd (17)  

Based on the safety elements defined above, the general format to 
calculate the design value of resistance can be defined: 

Rd = R{
ftex,ck

γtex,II
,
fc,ck

γC
, ddesign} (18)  

By applying this methodology, the value of the partial factor γtex,II and Δd 
can be derived for the given range of dnom, as shown in Fig. 11 for 
representative cases. 

It can be observed that the estimated value of γtex,II ranges between 
1.13 and 1.33 and the value of Δdbetween 6.8 mm and 2.4 mm. As a 
reasonable and safe estimate, the following values are suggested: 

Q. Yu et al.                                                                                                                                                                                                                                       



Engineering Structures 249 (2021) 113306

16

γtex,II ≈ 1.25 (19)  

Δd ≈ 6mm (20)  

The effectiveness of this proposal will be verified and compared with 
Proposal I in Section 7.3 by calculating the actual achieved reliability 
level of representative cases. 

7.3. Comparison and verification of the two safety format proposals 

A series of representative cases are investigated in the following to 
compare the previous proposals. To that aim, the classical design 
method of verifying at sectional level is considered, implying that the 
influence of statically indeterminate structures is taken into account by 
the partial factor on actions. The geometry of the studied cross section is 
shown in Fig. 12a. The range of the key design parameters used in this 
case study series is listed in Table 9. The value of cross-section height h 
and reinforcement ratio ρ are varied in a deterministic manner to 
generate a series of different cases. 

For the reliability analysis, the basic uncertainties introduced in 
Section 7.1 (listed in Table 8) are accounted for. The general form of the 
performance function g is defined as: 

g = θR,localR(ftex, fc, d) − Rd (21)  

Based on the safety format proposals, the design value of the resistance 
for the two safety formats can be calculated using Eq. (13) and Eq. (18) 
and the reliability analysis is performed using FORM to calculate the 
actual achieved reliability βachieved for the two types of safety formats as: 

Prob(g < 0) = Φ(− βachieved) (22)  

Where Prob () refers to the probability function, g to the performance 
function, Φ to the cumulative probability function of standardized 
normal distribution and βachieved refers to the actual achieved reliability 
index for a given case. The reliability analysis is performed with FORM 
method and the achieved reliability index from the two safety proposals 
are plotted in Fig. 12b. 

As it can be observed, the value of the achieved reliability level for 
Proposal I, βachieved,I, ranges between 2.12 and 3.66 and the value of the 
value of the achieved reliability level for Proposal II, βachieved,II, ranges 
between 2.87 and 3.22. Comparing the achieved reliability index for the 
two proposals with the target of αRβtgt = 3.04, it can be observed that in 
most of the range of the investigated cases, both safety formats result in 
acceptable levels of reliability. However, for Proposal I, when the 
effective depth is very low (smaller than 20 mm), the achieved reliability 
level is lower than the acceptable level (±0.5 target level) [21]. It can 
also be observed that the maximum achieved reliability level for Pro
posal I is even high for large thicknesses, suggesting potentially uneco
nomic design. Proposal II yields a more uniform level of reliability. 

8. Conclusions 

This paper investigates on a suitable safety format and analysis 
method for Textile Reinforced Concrete (TRC) structures. The results of 
an experimental programme on nine TRC slabs are presented and the 
implications of a brittle response on the reliability of a structure are 
discussed. Its main conclusions are listed below  

1. Structures presenting brittle responses (implying limited or none 
redistribution capacity of internal forces) can fail for load levels 
below those considered for design if the calculation of internal forces 
deviates from the actual response (typically, elastic-uncracked 
behaviour assumed in the calculation of internal forces). This situa
tion does not occur for a ductile response and raises questions on the 
consideration of model uncertainty of action effects within the Par
tial Safety Factor Format (PSFF) as considered in Eurocodes.  

2. The analysis of statically indeterminate TRC structures shows that 
performing a linear elastic calculation of internal forces considering 
fully cracked stiffness properties for all sections is a suitable manner 
to estimate the internal forces and response of TRC. This holds true 
provided that more than minimum amount of reinforcement are 
provided in the structure. 

3. Alternatively, using a nonlinear analysis (considering the develop
ment and extent of cracking) is also a suitable manner to estimate the 
internal forces. It is even more accurate than the previous, but 
requiring a significant effort for analysis.  

4. Estimating internal forces on the basis of the uncracked stiffness of 
the sections (as usually performed for ordinary reinforced concrete) 
can lead to relatively large deviations on the response and internal 
forces of a brittle structure as TRC. Such method shall not be used for 
design unless specific considerations were implemented to cover this 
increased uncertainty.  

5. Since for thin members, the variability of the effective depth can be 
significant compared to the mean value, the geometrical un
certainties can play a major role in calibrating the partial safety 
factors for designing structures at ultimate limit state. On the basis of 
reliable internal forces (determined by a linear-elastic fully cracked 
analysis or a nonlinear analysis), a safety format can be considered 
for TRC following the PSFF. Two ways for so doing are detailed in the 
manuscript:  
o Consideration of a partial safety factor for the tensile strength of 

the textile (γtex = 1.55) and nominal dimensions. All uncertainties 
(material, geometrical and model) are lumped into the partial 
safety factor of the textile.  

o Consideration of a reduced partial safety factor for the tensile 
strength of the textile (γtex = 1.25 and design dimensions (reduc
tion of 6 mm in effective depth). In this case, material and model 
uncertainties are accounted for in the partial safety factor of the 
textile while geometrical uncertainties are considered in the 
design dimensions.  

o In general, the second safety format is preferable, leading to a 
more uniform level of safety. 

It shall be noted that the aim of this investigation is to propose a 
safety format for designing TRC and a methodology for calibrating the 
associated safety factors and parameters. For practical applications, the 
values proposed in this investigation (γtex and Δd) should be tailored on 
the basis of actual values of material and geometrical uncertainties, 
which can depend on the material used, production method and quality 
control procedure. 
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Annex A: Derivation of the safety format proposals for TRC structures 

In this annex, the methodology used for the safety format calibration of TRC structures is presented. The annex is based on the semi-probabilistic 
reliability verification approach of the Eurocodes [9]. To that aim, the target reliability index βtgt provided in EN1990:2002 [9] for structures with 
medium consequence class and a reference period of 50 years at the ultimate limit state is used (βtgt = 3.8). 

The partial factors used in the semi-probabilistic reliability verification approach of the Eurocodes [9] are calibrated based on the First Order 
Reliability Method (FORM) [20,45]. Based on the FORM, to achieve the target reliability level, the partial factor for each basic random variable can be 
defined with the aid of the FORM sensitivity factors, which are the directional cosines of the vector between the mean value point and the FORM 
design point in standardised normal space. 

In principle, independently of the type of safety format selected, the required partial factors to achieve the exact target reliability level are different 
for each individual case due to the difference in the shape of the limit state function. The shape of the limit state function depends on the mechanical 
model of the corresponding limit state as well as the probabilistic modelling of the basic uncertainties involved in the limit states. However, to simplify 
the design procedure, in the semi-probabilistic approach, the values of the partial factors are fixed and selected with the criterion that the achieved 
reliability level for representative design cases are as close as possible to the target value. Another important simplification in the safety format 
calibration in Eurocodes is to adopt standardised FORM sensitivity factors for the resistance variable and the action effect variable. The FORM 
sensitivity factor for the resistance αR is assumed to take the value of 0.8 and that for the action effect αE is assumed to take the value of − 0.7 provided 
that the ratio between the standard deviation of the action effect variable and the resistance variable is within the range of 0.16 to 7.6 [9]. Using these 
standardised values makes it possible to separate the task of calibrating the partial safety factors on the resistance side and on the action effect side, 
which largely simplified the safety format calibration procedure. On the basis of such simplification, the target for the calibration of the partial factors 
for the resistance of TRC structures becomes: 

Prob(R − Rd < 0) = Φ(− αRβtgt) (A.1)  

When using the FORM or other reliability methods to calibrate the partial factors, iterative procedures are usually needed. However, under some 
conditions, simple analytical solutions can be derived for the partial factors. This can be done by making reasonable assumptions about the form of the 
limit state function. The resulting partial factors can eventually then be verified with the FORM or full-probabilistic reliability methods for the 
representative design cases. This strategy will be followed in this work when calibrating the safety format for TRC structures. 

Considering the basic random variables involved in the resistance of TRC structures, the general form of the resistance function can be assumed as: 

R = θR,localR(ftex, fc, d) (A.2)  

The specific form of the resistance function depends on mechanical model of the resistance and also the values of the basic variables. 
For calculation of the bending resistance of TRC structures, the methodology presented in Section 3 is considered, based on the Bernoulli-Navier 

assumption. The resistance of a cross section can be controlled either by the tensile strength of the textile reinforcement or by the compressive strength 
of concrete (but not by the two material strengths at the same time). The cases where the resistance is controlled by concrete strengths are not within 
the scope of this paper, as they are similar to conventional over-reinforced concrete structures, and the safety elements for this type of cases are 
actually applied through the partial factor on concrete compressive strength. For the cases where the resistance is controlled by the textile rein
forcement, Eq. (A.2) can be further simplified to the following form: 

R = θR,localR(ftex, d) (A.3)  

It is then reasonable to make an additional assumption considering that the resistance can be approximated by a multiplicative form of the basic 
random variables: 

R = θR,localR(ftex, d) ≈ ARθR,localftexd (A.4)  

Where AR represents a coefficient that depends on the other deterministic parameters related to the resistance. Based on the assumption in Eq. (A.4), 
the CoV of the resistance VR can be calculated approximately as: 

VR ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
θR
+ V2

ftex
+ V2

d

√

(A.5)  

It should be noted that Eq. (A.5) would be a close approximation if all the basic variables follow lognormal distributions, but in this case the flexural 
depth d is modelled as a normally distributed variable. In any case, Eq. (A.5) can still be a reasonable approximation for the purpose of estimating the 
partial factors. The validity of the above assumptions will eventually be verified by reliability analysis of representative cases with the selected partial 
factors. 

With respect to the value of Vd, it depends on the nominal flexural depth, and this results in different values of VR for cases with different flexural 
depths. For instance, for the range of dnom = 15–60 mm, the approximated value of VR is plotted in Fig. A.1a. 

Following the same strategy, the FORM sensitivity factors for the basic variables can also be estimated as follows: 

αftex ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

ftex

V2
θR
+ V2

ftex
+ V2

d

√

(A.6) 
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αθR ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
fθR

V2
θR
+ V2

ftex
+ V2

d

√
√
√
√ (A.7)  

αd ≈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V2

fd

V2
θR
+ V2

ftex
+ V2

d

√

(A.8)  

The change of the FORM sensitivity factors with the flexural depth is plotted Fig. A.1b. It should be stressed that the above analysis is based on two 
approximations: the assumption that the resistance can be approximated as a multiplicative form of the basic variables and the assumption that the 
resistance can be approximated by a lognormal distribution. From this analysis, it can be observed that the FORM sensitivity factor for the flexural 

depth decreases with increasing depth. It can further be observed that for the cases where the mean value of the flexural depth is relatively small, its 
uncertainty becomes dominant. Since the flexural depth follows a normal distribution (see Table 8), in the cases when the uncertainty of the flexural 
depth is dominating, the assumption that the resistance follows lognormal can be not valid anymore. This means the estimated FORM sensitivity 
factors of the range where the flexural depth is small can deviate from the actual value. Nevertheless, the estimated values can still provide important 
information for the safety format calibration problem and can be used as a useful reference. The estimated values of the CoV of the resistance variable 
and the FORM sensitivity factors of basic variables are used in the safety format calibration in Section 7 and their effectiveness is eventually verified by 
reliability analysis of representative cases. 

Annex B: Analysis of an assembled cross-beam system 

The aim of this annex is to provide a detailed example of the assembled cross-beam system, following the procedure explained in Section 5. The 
assembled cross-beam composed of beam TB1 and TB8 is used for this purpose. For beam TB1 (refer to Section 3 for the values of the parameters of 
beam TB1), the uncracked cross-sectional flexural stiffness EIUC is: 

EIUC = Ecm
bh3

12
= 1.40∙108[kN∙mm2] (23) 

Thus, the uncracked stiffness of the beam TB1 results: 

(
dQ
dδ

)LAUC =
48EIUC

L3 = 3.88[kN/mm] (24) 

And the cracked cross-sectional flexural stiffness EIFC of beam TB1 is: 

EIFC =
bx3

N

3
Ecm +

∑nr

i=1
(di − xN)

2atexEtex,m = 1.13∙107[kN∙mm2] (26)  

Where xN refers to the position of the neutral axis (see Fig. 5) and the fully-cracked stiffness of beam TB1 is: 

(
dQ
dδ

)LAFC =
48EIFC

L3 = 0.31[kN/mm] (27) 

The uncracked and fully-cracked stiffness of beam TB8 can be calculated with the same method. Based on this information, the load–deflection 
curves of the assembled system using LAUC and LAFC methods are calculated and plotted in Fig. B.1. For the NLA, a trilinear moment–curvature 
relationship is assumed for each beam and the actual extent of cracked and uncracked regions are accounted for. The resultant response of the 
assembled system using NLA method and the assembled experimental response are plotted in Fig. B1. for the selected case. 
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[16] Häußler-Combe U, Weselek J, Jesse F. A Safety Concept for Non-Metallic 
Reinforcement for Concrete under Bending. ACI Struct J 2019;116. https://doi. 
org/10.14359/51710873. 

[17] Kromoser B, Preinstorfer P, Kollegger J. Building lightweight structures with 
carbon-fiber-reinforced polymer-reinforced ultra-high-performance concrete: 
Research approach, construction materials, and conceptual design of three building 
components. Struct Concr J FIB 2019;20(2):730–44. https://doi.org/10.1002/ 
suco.201700225. 

[18] CEN. prEN 1990:2020: Eurocode: Basis of structural and geotechnical design 2020. 
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